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1.1 Introduction 
 
US airlines have encountered difficulties since September 11, 2001, particularly 
on domestic routes. Figure 1.1 plots quarterly operating profit margins (profit from 
domestic operations as a percent of operating revenue) for three segments of the 
industry, the small regional airlines, the medium-size low-cost airlines and the 
large network airlines. The regional airlines have performed relatively well, 
earning over a 10% profit margin, and the low-cost airlines have performed 
adequately, earning a considerably smaller but nonetheless positive profit 
margin. However the network airlines have performed poorly, earning a large 
negative profit margin. Some have sought bankruptcy protection. 

 
 

Figure 1.1 Airline Domestic Operating Profit Margin
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Source: http://www.bts.gov/press_releases/2004/bts035_04/html/bts035_04.html  
 

 
When we ask why airline performance has varied so much, we naturally 

think of revenues and costs. Figure 1.2 plots quarterly operating revenue per 
available seat mile (a measure of average revenue), and Figure 1.3 plots 
quarterly operating expense per available seat mile (a measure of average cost). 
On the revenue side, the regional airlines earned the highest operating revenue 
per available seat mile, trailed in order by the network airlines and the low-cost 
airlines. On the cost side, the low-cost airlines incurred the lowest operating cost 
per available seat mile, appropriately enough, trailed by the network airlines and 
the regional airlines. 

 
 

http://www.bts.gov/press_releases/2004/bts035_04/html/bts035_04.html�
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Figure 1.2 Airline Domestic Unit Revenue
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Source: as Figure 1.1 
 
 
It appears that the regional airlines have been the most profitable segment of 

the domestic airline industry despite having had the highest unit costs. The low-
cost airlines have been marginally profitable because their low unit revenues 
have been offset by even lower unit costs. Finally, the network airlines have lost 
money primarily because of their high unit costs. 

 
On the cost side, three hypotheses spring quickly to mind, each being 

inspired by conventional economic theory. First, the pattern of unit operating 
costs may reflect a pattern of scale economies that generates a U-shaped 
minimum average cost function favoring the medium-size low-cost airlines. 
Second, it may reflect higher input prices paid by the regional and network 
airlines. This hypothesis rings true for the older network airlines, which at the 
time were burdened by high labor costs attributable in large part to onerous 
pension obligations. Third, it may reflect different technologies embedded in a 
“low-cost business model” employed by the low-cost airlines and an inefficient 
“hub-and-spoke” system employed by the network airlines. Support for this 
hypothesis comes from the network airlines themselves, which predict efficiency 
gains and cost savings as they gradually abandon the system they adopted three 
decades ago.  
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Figure 1.3 Airline Domestic Unit Cost
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Source: as Figure 1.1 
 

 
On the revenue side, differential pricing power is a possible explanation, 

although it is not clear why the small regional airlines would have such an 
advantage. A more likely explanation is variation in rates of capacity utilization as 
measured by load factors (the percent of available seats actually sold), which 
might have favored the regional airlines and penalized the low-cost airlines. 
 

Each of these hypotheses is suggested by economic theory, and may or 
may not be refuted by the evidence. We now put forth an additional pair of 
refutable hypotheses that, although not suggested by conventional economic 
theory, should not be dismissed a priori.  

 
One hypothesis concerns the cost side, and posits that part of the observed 

pattern of unit operating cost may be a consequence of cost inefficiency at the 
regional and network airlines. Cost inefficiency can be “technical,” arising from 
excessive resource use given the amount of traffic, or “allocative,” arising from 
resources being employed in the wrong mix, given their prices. Perhaps the low-
cost airlines had relatively low unit costs because they utilized part-time labor 
and because they leased, rather than purchased, aircraft. Either strategy would 
reduce idleness and down time. More generally, perhaps the low-cost airlines 
had relatively low unit costs because their resources, human and physical, were 
well managed. This would place them on the minimum average cost function, 
whereas cost inefficiency at the regional and network airlines would place them 
above the minimum average cost function. 
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The second hypothesis concerns the revenue side, and posits that part of 
the observed pattern of unit operating revenue may be a consequence of 
revenue inefficiency at the network and low-cost airlines. Revenue inefficiency 
can be “technical,” arising from a failure to provide maximum service from the 
available resources, or “allocative,” arising from the provision of services in the 
wrong mix, given their prices. Perhaps the regional airlines were nimble enough 
to adjust their route structures to respond quickly to fluctuations in passenger 
demand. Perhaps the regional airlines have faster gate turnaround times than the 
network airlines, whose hub-and-spoke technology leaves aircraft and crew idle 
and sacrifices revenue. This would place the regional airlines on the maximum 
average revenue function, whereas revenue inefficiency at the network and low-
cost airlines would place them beneath the maximum average revenue function. 

 
The point of the foregoing discussion is not to engage in a deep exploration 

into airline economics, about which we are blissfully ignorant. We are merely 
frequent fliers who happen to be curious economists wondering what might 
explain the observed variation in the recent domestic performance of US airlines. 
The point is to suggest that variation in productive efficiency, in both the 
management of resources and the management of services, may be a potentially 
significant source of variation in financial performance. Inefficient behavior is 
assumed away in conventional economic theory, in which first-order and second-
order optimizing conditions are satisfied. But it exists in the real world, as a 
perusal of almost any trade publication will verify, and as the hordes of 
consultants armed with their buzzwords will testify. 

 
Productive inefficiency exists, and it deserves to be included in our analytical 

toolkit because it can generate refutable hypotheses concerning the sources of 
variation in business performance. This book is devoted to the study of 
inefficiency in production and its impact on economic and financial performance. 
The study ranges from the underlying theory to the analytical foundations, and 
then to the quantitative techniques and the empirical evidence.  

 
Chapter 1 sets the stage. Section 1.2 provides background material, and 

focuses on hypotheses that have been proposed in the literature that would 
explain variation in producer performance. This Section also provides a glimpse 
at the empirical literature, and demonstrates that the search for variation in 
producer performance has been conducted in a wide variety of settings. Section 
1.3 lays the theoretical foundation for the measurement of productive efficiency. 
It provides definitions of alternative notions of productive efficiency, and it 
provides corresponding measures of efficiency. Section 1.4 offers a brief 
introduction to alternative techniques that have been developed to quantify 
inefficiency empirically. Section 1.5 introduces various econometric approaches 
to efficiency estimation, while Section 1.6 introduces variants of the mathematical 
programming approach to efficiency estimation. Section 1.7 introduces the 
Malmquist productivity index, and shows how to decompose it into various 
sources of productivity change, including variation in productive efficiency. 
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Section 1.8 describes three ways of approximating a Malmquist productivity 
index: the use of superlative index numbers, the use of econometric techniques 
and the use of mathematical programming techniques. Section 1.9 offers some 
concluding observations. 

 
Chapter 2 extends Section 1.5 by providing a detailed survey of the 

econometric approach to efficiency estimation. Chapter 3 extends Section 1.6 by 
providing a detailed survey of the mathematical programming approach to 
efficiency estimation. Chapter 4 recasts the parametric and statistical approach 
of Chapter 2, and the nonparametric and deterministic approach of Chapter 3, 
into a nonparametric and statistical approach. Chapter 5 extends Sections 1.7 
and 1.8 by discussing alternative approaches to the measurement of productivity 
change, with special emphasis on efficiency change as a source of productivity 
change. 

 
 
 
1.2 Background 
 
When discussing the economic performance of producers, it is common to 
describe them as being more or less “efficient,” or more or less “productive.” In 
this Section we discuss the relationship between these two concepts. We 
consider some hypotheses concerning the determinants of producer 
performance, and we consider some hypotheses concerning the financial 
consequences of producer performance. 
 
 By the productivity of a producer we mean the ratio of its output to its 
input. This ratio is easy to calculate if the producer uses a single input to produce 
a single output. In the more likely event that the producer uses several inputs to 
produce several outputs, the outputs in the numerator must be aggregated in 
some economically sensible fashion, as must the inputs in the denominator, so 
that productivity remains the ratio of two scalars. Productivity growth then 
becomes the difference between output growth and input growth, and the 
aggregation requirement applies here as well.  
 

Variation in productivity, either across producers or through time, is thus a 
residual, which Abramovitz (1956) famously characterized as “a measure of our 
ignorance.” Beginning perhaps with Solow (1957), much effort has been devoted 
to dispelling our ignorance by “whittling away at the residual” (Stone (1980)). 
Much of the whittling has involved minimizing measurement error in the 
construction of output and input quantity indexes. The conversion of raw data into 
variables consistent with economic theory is a complex undertaking. Griliches 
(1996) surveys the economic history of the residual, and state-of-the-art 
procedures for whittling away at it are outlined in OECD (2001). When the 
whittling is finished, we have a residual suitable for analysis.  
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In principle the residual can be attributed to differences in production 
technology, differences in the scale of operation, differences in operating 
efficiency, and differences in the operating environment in which production 
occurs. The US Department of Labor’s Bureau of Labor Statistics (2005) and the 
OECD (2001) attribute variation in productivity through time to these same 
sources. Proper attribution is important for the adoption of private managerial 
practices and the design of public policies intended to improve productivity 
performance. We are naturally interested in isolating the first three components, 
which are under the control of management, from the fourth, which is not. Among 
the three endogenous components our interest centers on the efficiency 
component, and on measuring both its cross-sectional contribution to variation in 
productivity and its inter-temporal contribution to productivity change. 
 
 By the efficiency of a producer we have in mind a comparison between 
observed and optimal values of its output and input. The exercise can involve 
comparing observed output to maximum potential output obtainable from the 
input, or comparing observed input to minimum potential input required to 
produce the output, or some combination of the two. In these two comparisons 
the optimum is defined in terms of production possibilities, and efficiency is 
technical. It is also possible to define the optimum in terms of the behavioral goal 
of the producer. In this event efficiency is measured by comparing observed and 
optimum cost, revenue, profit, or whatever goal the producer is assumed to 
pursue, subject, of course, to any appropriate constraints on quantities and 
prices. In these comparisons the optimum is expressed in value terms, and 
efficiency is economic. 
 
 Even at this early stage three problems arise, and much of this Section is 
devoted to exploring ways each has been addressed. First, which outputs and 
inputs are to be included in the comparison? Second, how are multiple outputs 
and multiple inputs to be weighted in the comparison? And third, how is the 
technical or economic potential of the producer to be determined? 
 
 Many years ago Knight (1933) addressed the first question by noting that 
if all outputs and all inputs are included, then since neither matter nor energy can 
be created or destroyed, all producers would achieve the same unitary 
productivity evaluation. In this circumstance Knight proposed to redefine 
productivity as the ratio of useful output to input. Extending Knight’s redefinition 
to the ratio of useful output to useful input, and representing usefulness with 
weights incorporating market prices, generates a modern economic productivity 
index. As a practical matter, however, the first problem is not how to proceed 
when all outputs and all inputs are included, but rather how to proceed when not 
enough outputs and inputs are included.  
 

As Stigler (1976) has observed, measured inefficiency may be a reflection 
of the analyst’s failure to incorporate all relevant variables and, complicating the 
first problem, to specify the right economic objectives and the right constraints. 
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Stigler was criticizing the work of Leibenstein (1966, 1976), who focused on 
inadequate motivation, information asymmetries, incomplete contracts, agency 
problems and the attendant monitoring difficulties within the firm, and who 
lumped all these features together and called the mix “X-inefficiency.” When the 
agents’ actions are not aligned with the principal’s objective, potential output is 
sacrificed. Thus what appears as inefficiency to Leibenstein is evidence of an 
incomplete model to Stigler, who called it waste and concluded that “…waste is 
not a useful economic concept. Waste is error within the framework of modern 
economic analysis…” (p. 216) The practical significance of this exchange is that 
if Stigler’s wish is not granted, and not all variables reflecting the objectives and 
constraints of the principal and the agents are incorporated into the model, 
agency and related problems become potential sources of measured (if not 
actual) inefficiency. 

 
Leibenstein was not writing in a vacuum. His approach fits nicely into the 

agency literature. The recognition of agency problems goes back at least as far 
as the pioneering Berle and Means (1932) study of the consequences of the 
separation of ownership from control, in which owners are the principals and 
managers are the agents. Leibenstein’s notion of X-inefficiency also has much in 
common with Simon’s (1955) belief that in a world of limited information 
processing ability, managers exhibit “bounded rationality” and engage in 
“satisficing” behavior. Along similar lines, Williamson (1975, 1985) viewed firms 
as seeking to economize on transaction costs, which in his view boiled down to 
economizing on bounded rationality. Bounded rationality and the costs of 
transacting also become potential sources of measured inefficiency. 
 
 It would be desirable, if extraordinarily difficult, to construct and implement 
Stigler’s complete model involving all the complexities mentioned above. We 
have not seen such a model. What we have seen are simplified (if not simple) 
models of the firm in which measured performance differentials presumably 
reflect variation in the ability to deal with the complexities of the real world. 
Indeed performance measures based on simplified models of the firm are often 
useful, and sometimes necessary. They are useful when the objectives of 
producers, or the constraints facing them, are either unknown or unconventional 
or subject to debate. In this case a popular research strategy has been to model 
producers as unconstrained optimizers of some conventional objective, and to 
test the hypothesis that inefficiency in this environment is consistent with 
efficiency in the constrained environment. The use of such incomplete measures 
has proved necessary in a number of contexts for lack of relevant data. One 
example of considerable policy import occurs when the production of desirable 
(and measured and priced) outputs is recorded, but the generation of undesirable 
(and frequently unmeasured and more frequently unpriced) byproducts is not. 
Another occurs when the use of public infrastructure enhances private 
performance, but its use goes unrecorded. In each case the measure of 
efficiency or productivity that is obtained may be very different from the measure 
one would like to have.  
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Even when all relevant outputs and inputs are included, there remains the 

formidable second problem of assigning weights to variables. Market prices 
provide a natural set of weights, but two types of question arise. First, suppose 
market prices exist. If market prices change through time, or vary across 
producers, is it possible to disentangle the effects of price changes and quantity 
changes in a relative performance evaluation? Alternatively, if market prices 
reflect monopoly or monopsony power, or cross-subsidy, or the determination of 
a regulator, do they still provide appropriate weights in a relative performance 
evaluation? Second, suppose some market prices do not exist. In the cases of 
environmental impacts and public infrastructure mentioned above, the unpriced 
variables are externalities either generated by or received by market sector 
producers. How do we value these externalities? However the weighting problem 
is more pervasive than the case of externalities. The non-market sector is 
growing relative to the market sector in most advanced economies, and by 
definition the outputs in this sector are not sold on markets. How then do we 
value outputs such as law enforcement and fire protection services, or even 
public education services, each of which is publicly funded rather than privately 
purchased? Is it possible to develop proxies for missing prices that would provide 
appropriate weights in a performance evaluation? The presence of distorted or 
missing prices complicates the problem of determining what is meant by 
“relevant.” 
 
 The third problem makes the first two seem easy. It is as difficult for the 
analyst to determine a producer’s potential as it is for the producer to achieve 
that potential. It is perhaps for this reason that for many years the productivity 
literature ignored the efficiency component identified by the BLS and the OECD. 
Only recently, with the development of a separate literature devoted to the study 
of efficiency in production, has the problem of determining productive potential 
been seriously addressed. Resolution of this problem makes it possible to 
integrate the two literatures. Integration is important for policy purposes, since 
action taken to enhance productivity performance requires an accurate attribution 
of observed performance to its components. 
  

By way of analogy, we do not know, and cannot know, how fast a human 
can run 100 meters. But we do observe best practice and its improvement 
through time, and we do observe variation in actual performance among runners. 
The world of sport is full of statistics, and we have all-star teams whose members 
are judged to be the best at what they do. Away from the world of sport, we use 
multiple criteria to rank cities on the basis of quality of life indicators (Zurich and 
Geneva are at the top). At the macro level we use multiple criteria to rank 
countries on the basis of economic freedom (Norway, Sweden and Australia are 
at the top), environmental sustainability (Finland and Norway are at the top), 
business risk (Iraq and Zimbabwe pose the most risk) and corruption (Finland 
and New Zealand are the least corrupt), among many others. The United 
Nation’s Human Development Index is perhaps the best-known and most widely 
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studied macroeconomic performance indicator (Norway and Sweden are at the 
top). In each of these cases we face the three problems mentioned at the outset 
of this section: what indicators to include, how to weight them, and how to define 
potential. The selection and weighting of indicators are controversial by our 
standards, although comparisons are appropriately made relative to best practice 
rather than to some ideal standard. 

 
 The same reasoning applies to the evaluation of business performance. 

We cannot know “true” potential, whatever the economic objective. But we do 
observe best practice and its change through time, and we also observe variation 
in performance among producers operating beneath best practice. This leads to 
the association of “efficient” performance with undominated performance, or 
operation on a best practice “frontier,” and of inefficient performance with 
dominated performance, or operation on the wrong side of a best practice 
frontier. Interest naturally focuses on the identification of best practice producers, 
and of benchmarking the performance of the rest against that of the best. 
Businesses themselves routinely benchmark their performance against that of 
their peers, and academic interest in benchmarking is widespread, although 
potential synergies between the approaches adopted by the two communities 
have yet to be fully exploited. Davies and Kochhar (2002) offer an interesting 
academic critique of business benchmarking. 
 
 Why the interest in measuring efficiency and productivity? We can think of 
three reasons. First, only by measuring efficiency and productivity, and by 
separating their effects from those of the operating environment so as to level the 
playing field, can we explore hypotheses concerning the sources of efficiency or 
productivity differentials. Identification and separation of controllable and 
uncontrollable sources of performance variation is essential to the institution of 
private practices and public policies designed to improve performance. Zeitsch et 
al. (1994) provide an empirical application showing how important it is to 
disentangle variation in the operating environment (in this case customer density) 
from variation in controllable sources of productivity growth in Australian 
electricity distribution. 
 

Second, macro performance depends on micro performance, and so the 
same reasoning applies to the study of the growth of nations. Lewis (2004) 
provides a compelling summary of McKinsey Global Institute (MGI) productivity 
studies of 13 nations over 12 years, the main findings being that micro 
performance drives macro performance, and that a host of institutional 
impediments to strong micro performance can be identified. This book, and the 
studies on which it is based, make it clear that there are potential synergies, as 
yet sadly unexploited, between the MGI approach and the academic approach to 
performance evaluation. 
 

Third, efficiency and productivity measures are success indicators, 
performance metrics, by which producers are evaluated. However for most 
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producers the ultimate success indicator is financial performance, and the 
ultimate metric is the bottom line. Miller’s (1984) clever title, “Profitability = 
Productivity + Price Recovery,” encapsulates the relationship between 
productivity and financial performance. It follows that productivity growth leads to 
improved financial performance, provided it is not offset by declining price 
recovery attributable to falling product prices and/or rising input prices. Grifell-
Tatjé and Lovell (1999) examine the relationship for Spanish banks facing 
increasing competition as a consequence of European monetary union. Salerian 
(2003) explores the relationship for Australian railroads, for which increasing 
intermodal competition has contributed to declining price recovery that has 
swamped the financial benefits of impressive productivity gains. This study also 
demonstrates that, although the bottom line may be paramount in the private 
sector, it is not irrelevant in the public sector; indeed many governments monitor 
the financial performance as well as the non-financial performance of their public 
service providers. 

 
Many other studies, primarily in the business literature, adopt alternative 

notions of financial performance, such as return on assets or return on equity. 
These studies typically begin with the “DuPont triangle,” which decomposes 
return on assets as π/A = (π/R)(R/A) = (return on sales)(investment turnover), 
where π = profit, A = assets and R = revenue. The next step is to decompose the 
first leg of the DuPont triangle as (π/R) = [(R-C)/R] = [1 - (R/C)-1], where C is cost 
and R/C is profitability. The final step is to decompose profitability into 
productivity and price recovery, a multiplicative alternative to Miller’s additive 
relationship. The objective is to trace the contribution of productivity change up 
the triangle to change in financial performance. Horrigan (1968) provides a short 
history of the DuPont triangle as an integral part of financial ratio analysis, and 
Eilon (1984) offers an accessible survey of alternative decomposition strategies. 
Banker et al. (1993) illustrate the decomposition technique with an application to 
the US telecommunications industry, in which deregulation led to productivity 
gains that were offset by deteriorating price recovery brought on by increased 
competition. 
 
 In some cases measurement enables us to quantify performance 
differentials that are predicted qualitatively by economic theory. An example is 
provided by the effect of market structure on performance. There is a common 
belief that productive efficiency is a survival condition in a competitive 
environment, and that its importance diminishes as competitive pressure 
subsides. Hicks (1935) gave eloquent expression to this belief by asserting that 
producers possessing market power “…are likely to exploit their advantage much 
more by not bothering to get very near the position of maximum profit, than by 
straining themselves to get very close to it. The best of all monopoly profits is a 
quiet life.” (p. 8) Berger and Hannan (1998) provide a test of the quiet life 
hypothesis in US banking, and find evidence that banks in relatively concentrated 
markets exhibit relatively low cost efficiency.  
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Continuing the line of reasoning that firms with market power might not be 
“pure” profit maximizers, Alchian and Kessel (1962) replaced the narrow profit 
maximization hypothesis with a broader utility maximization hypothesis, in which 
case monopolists and competitors might be expected to be equally proficient in 
the pursuit of utility. The ostensible efficiency differential is then explained by the 
selection of more (observed) profit by the competitor and more (unobserved) 
leisure by the monopolist, which of course recalls the analyst’s problem of 
determining the relevant outputs and inputs of the production process. Alchian 
and Kessel offer an alternative explanation for the apparent superior 
performance of competitive producers. This is that monopolies are either 
regulated, and thereby constrained in their pursuit of efficiency, or unregulated 
but threatened by regulation (or by antitrust action) and consequently similarly 
constrained. If these producers are capable of earning more than the regulated 
profit, and if their property rights to the profit are attenuated by the regulatory or 
antitrust environment, then inefficiency becomes a free good to producers 
subject to, or threatened by, regulation or antitrust action. As Alchian and Kessel 
put it, “[t]he cardinal sin of a monopolist…is to be too profitable.” (p. 166) 

 
Baumol (1959), Gordon (1961) and Williamson (1964) argued along 

similar lines. An operating environment characterized by market power and 
separation of ownership from control leaves room for “managerial discretion.” 
Given the freedom to choose, managers would seek to maximize a utility function 
in which profit was either one of several arguments or, more likely, a constraint 
on the pursuit of alternative objectives. This idea, and variants of it, recurs 
frequently in the agency literature. 
 
 Thus competition is expected to enhance performance either because it 
forces producers to concentrate on “observable” profit-generating activities at the 
expense of Hicks’ quiet life, or because it frees producers from the actual or 
potential constraints imposed by the regulatory and antitrust processes. One 
interesting illustration of the market structure hypothesis is the measurement of 
the impact of international trade barriers on domestic industrial performance. 
Many years ago Carlsson (1972) used primitive frontier techniques to uncover a 
statistically significant inverse relationship between the performance of Swedish 
industries and various measures of their protection from international 
competition. More recently Tybout and Westbrook (1995), Pavcnik (2002) and 
Schor (2004) have applied modern frontier techniques to longitudinal micro data 
in an effort to shed light on the linkage between openness and productivity in 
Mexico, Chile and Brazil. Specific findings vary, but a general theme emerges. 
Trade liberalization brings aggregate productivity gains attributable among other 
factors to improvements in productivity among continuing firms, and to entry of 
relatively productive firms and exit of relatively unproductive firms. 
 
 A second situation in which measurement enables the quantification of 
efficiency or productivity differentials predicted fairly consistently by theory is in 
the area of economic regulation. The most commonly cited example is rate of 



 13 

return regulation, to which many utilities have been subjected for many years, 
and for which there exists a familiar and tractable analytical paradigm developed 
by Averch and Johnson (1962). Access to a tractable model and to data supplied 
by regulatory agencies has spawned numerous empirical studies, virtually all of 
which have found rate of return regulation to have led to over-capitalization that 
has had an adverse impact on utility performance and therefore on consumer 
prices. These findings have motivated a movement toward incentive regulation in 
which utilities are reimbursed on the basis of a price cap or revenue cap formula 
RPI - X, with X being a productivity (or efficiency) offset to movements in an 
appropriate price index RPI. The reimbursement formula allows utilities to pass 
along any cost increases incorporated in RPI, less any expected performance 
improvements embodied in the offset X. Since X is a performance indicator, this 
trend has spawned a huge theoretical and empirical literature using efficiency 
and productivity measurement techniques to benchmark the performance of 
regulated utilities. Bogetoft (2000 and references cited therein) has developed 
the theory within a frontier context, in which X can be interpreted as the outcome 
of a game played between a principal (the regulator) and multiple agents (the 
utilities). Netherlands Bureau for Economic Policy Analysis (2000) provides a 
detailed exposition of the techniques. Kinnunen (2005) reports either declining or 
stable trends in customer electricity prices in Finland, Norway and Sweden, 
where variants of incentive regulation have been in place for some time. Since 
enormous amounts of money are involved, the specification and weighting of 
relevant variables and the sample selection criteria become important, and 
frequently contentious, issues in regulatory proceedings. 
 
  Another regulatory context in which theoretical predictions have been 
quantified by empirical investigation is the impact of environmental controls on 
producer performance. In this context, however, the private cost of reduced 
efficiency or productivity must be balanced against the social benefits of 
environmental protection. Of course the standard paradigm that hypothesizes 
private costs of environmental constraints may be wrong; Porter (1991) has 
argued that well-designed environmental regulations can stimulate innovation, 
enhance productivity, and thus be privately profitable. Ambec and Barla (2002) 
develop a theory that predicts the Porter hypothesis. In any event, the problem of 
specifying and measuring the relevant variables crops up once again. Färe et al. 
(1989, 1993) have developed the theory within a frontier context. Reinhard et al. 
(1999) examined a panel of Dutch dairy farms that generate surplus manure, the 
nitrogen content of which contaminates groundwater and surface water and 
contributes to acid rain. They calculated a mean shadow price of the nitrogen 
surplus of just over NLG3 per kilogram, slightly higher than a politically 
constrained levy actually imposed of NLG1.5 per kilogram of surplus. Ball et al. 
(2004) calculated exclusive and inclusive productivity indexes for US agriculture, 
in which pesticide use causes water pollution. They found that inclusive 
productivity growth initially lagged behind exclusive productivity growth. However 
when the Environmental Protection Agency began regulating the manufacture of 
pesticides, inclusive productivity growth caught up with, and eventually 
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surpassed, exclusive productivity growth, as would be expected. Consistent with 
these findings, they found an inverted U shaped pattern of shadow prices, 
reflecting a period of lax regulation followed by tightened regulation that 
eventually led to the discovery and use of relatively benign and more effective 
pesticides. 
 
 A third situation in which measurement can quantify theoretical 
propositions is the effect of ownership on performance. Alchian (1965) noted that 
the inability of public sector owners to influence performance by trading shares in 
public sector producers means that public sector managers worry less about 
bearing the costs of their decisions than do their private sector counterparts. 
Hence they are contractually constrained in their decision-making latitude, given 
less freedom to choose, so to speak. “Because of these extra constraints - or 
because of the ‘costs’ of them - the public arrangement becomes a higher cost 
(in the sense of ‘less efficient’) than that for private property agencies.” (p. 828) A 
literature has developed based on the supposition that public managers have 
greater freedom to pursue their own objectives, at the expense of conventional 
objectives. Niskanen (1971) viewed public managers as budget maximizers, de 
Alessi (1974) viewed public managers as preferring capital-intensive budgets, 
and Lindsay (1976) viewed public managers as preferring “visible” variables. 
Each of these hypotheses suggests that measured performance is lower in the 
public sector than in the private sector. Holmstrom and Tirole (1989) survey 
much of the theoretical literature, as does Hansmann (1988), who introduces 
private not-for-profit producers as a third category. Empirical tests of the 
public/private performance differential hypothesis are numerous. Many of the 
comparisons have been conducted using regulated utility data, because public 
and private firms frequently compete in these industries, because of the global 
trend toward privatization of public utilities, and because regulatory agencies 
collect and provide data. Jamash and Pollitt (2001) survey the empirical evidence 
for electricity distribution. Education and health care are two additional areas in 
which numerous public/private performance comparisons have been conducted. 
 
 In any public/private performance comparison one confronts the problem 
of how to measure their performance. Pestieau and Tulkens (1993) offer a 
spirited defense of a narrow focus on technical efficiency, so as to level the 
playing field. They argue that public enterprises have objectives and constraints 
(e.g., fiscal balance and universal service, uniform price requirements, but at the 
same time a soft budget constraint) different from those of private enterprises, 
and the only common ground on which to compare their performance is on the 
basis of their technical efficiency. 
 
 In some cases theory gives no guidance, or provides conflicting signals, 
concerning the impact on performance of some phenomenon. In such cases 
empirical measurement provides qualitative as well as quantitative evidence. 
Four examples illustrate the point. Are profit maximizing firms more efficient than 
cooperatives? Is one form of sharecropping more efficient than another? Is 
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slavery an efficient way of organizing production? Is organized crime efficiently 
organized? The answer to each question seems to be “it depends,” and so 
empirical measurement is called for. Theory and evidence are offered by 
Pencavel (2001) for cooperatives, by Otsuka et al. (1992) and Garrett and Xu 
(2003) for sharecropping, by Fogel and Engerman (1974) for slavery, and by 
Fiorentini and Peltzman (1995) for organized crime.   
 
 Finally, the ability to quantify efficiency and productivity provides 
management with a control mechanism with which to monitor the performance of 
production units under its control. The economics, management science and 
operations research literatures contain numerous examples of the use of 
efficiency and productivity measurement techniques for this and related 
purposes. However interest in these techniques has spread far beyond their 
origins, as evidenced by the empirical applications referenced in Table 1.1. The 
recent dates of these studies and the journals in which they appear demonstrate 
that the techniques are currently in use in fields far removed from their origins. In 
each of these applications interesting and challenging issues concerning 
appropriate behavioral objectives and constraints, and the specification of 
relevant variables and their measurement, arise. These applications also 
illustrate the rich variety of analytical techniques that can be used in making 
efficiency and productivity comparisons. It is worth pondering how each of these 
examples deals with the long list of problems discussed in this Section. 
 
 

Table 1.1 Empirical Applications of Efficiency and Productivity Analysis 

Accounting, advertising, auditing,  
insurance and law firms 

Banker et al. (2005) 
Luo and Donthu (2005) 
Dopuch et al. (2003) 
Cummins et al. (2005) 
Wang (2000) 

Airports Oum and Yu (2004) 
Sarkis and Talluri (2004) 
Yoshida and Fujimoto (2004) 
Yu (2004) 

Air transport Coelli et al. (2002) 
Sickles et al. (2002) 
Scheraga (2004) 
Duke and Torres (2005) 

Bank branches Davis and Albright (2004) 
Camanho and Dyson (2005) 
Porembski et al. (2005) 
Silva Portela and Thanassoulis (2005) 

Bankruptcy prediction Wheelock and Wilson (2000) 
Becchetti and Sierra (2003) 
Cielen et al. (2004) 
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Benefit – cost analysis Goldar and Misra (2001) 
Hofler and List (2004) 

Community and rural health care Birman et al. (2003) 
Dervaux et al. (2003) 
Jiménez et al. (2003) 
Kirigia et al. (2004) 

Correctional facilities Gyimah – Brempong (2000) 
Nyhan (2002) 

Credit risk evaluation Emel et al. (2003) 
Paradi et al. (2004) 

Dentistry Buck (2000) 
Grytten and Rongen (2000) 
Linna et al. (2003) 
Widstrom et al. (2004) 

Discrimination Croppenstedt and Meschi (2000) 
Bowlin et al. (2003) 
Mohan and Ruggiero (2003) 

Education: primary and secondary Dolton et al. (2003) 
Mayston (2003) 
Ammar et al. (2004) 
Dodson and Garrett (2004) 

Education: tertiary Bonaccorsi and Daraio (2003) 
Mensah and Werner (2003) 
Guan and Wang (2004) 
Warning (2004) 

Elections Obata and Ishii (2003) 
Foroughi et al. (2005) 

Electricity distribution Ajodhia and Petrov (2004) 
Filippini et al. (2004) 
Agrell et al. (2005) 
Edvardsen et al. (2006) 

Electricity generation Arocena and Waddams Price (2003) 
Korhonen and Luptacik (2004) 
Atkinson and Halabi (2005) 
Cook and Green (2005) 

Environment: macro applications Jeon and Sickles (2004) 
Lindmark (2004) 
Zaim (2004) 
Henderson and Millimet (2005) 

Environment: micro applications Linton (2002) 
Yang et al. (2003) 
Koundouri and Xepapadeas (2004) 
Banzhaf (2005) 

Financial statement analysis Chen and Zhu (2003) 
Feroz et al. (2003) 

Fishing Chiang et al. (2004) 
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Herrero (2004) 
Kompas et al. (2004) 
Martinez-Cordero and Leung (2004) 

Forestry Otsuki et al. (2002) 
Bi (2004) 
Hof et al. (2004) 
Liu and Yin (2004) 

Gas distribution Rossi (2001) 
Carrington et al. (2002) 
Hammond et al. (2002) 
Hawdon (2003) 

Hospitals Chang et al. (2004) 
Stanford (2004) 
Ventura et al. (2004) 
Gao et al. (2006) 

Hotels Hwang and Chang (2003) 
Chiang et al. (2004) 
Barros (2005) 
Sigala et al. (2005) 

Internet commerce Wen et al. (2003) 
Barua et al. (2004) 
Chen et al. (2004) 
Serrano-Sinca et al. (2005) 

Labor markets Sheldon (2003) 
Diaz-Mayans and Sanchez (2004) 
Ibourk et al. (2004) 
Millimet (2005) 

Libraries Hammond (2002) 
Shim (2003) 
Kao and Lin (2004) 
Reichmann (2004) 

Location Thomas et al. (2002) 
Cook and Green (2003) 
Takamura and Tone (2003) 

Macroeconomics Cherchye et al. (2004) 
Grafton et al. (2004) 
Despotis (2005) 
Ravallion (2005) 

Mergers Cuesta and Orea (2002) 
Ferrier and Valdmanis (2004) 
Bogetoft and Wang (2005) 
Sherman and Rupert (2006) 

Military Barros (2002) 
Bowlin (2004) 
Brockett et al. (2004) 
Sun (2004) 
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Municipal services Hughes and Edwards (2000) 
Moore et al. (2001) 
Prieto and Zofio (2001) 
Southwick (2005) 

Museums Mairesse and Vanden Eeckaut (2002) 
Bishop and Brand (2003) 
Basso and Funari (2004) 

Nursing homes Fried et al. (2002) 
Farsi and Filippini (2004) 
Hougaard et al. (2004) 
Laine et al. (2005) 

Physicians and physician practices Wagner et al. (2003) 
Rosenman and Friesner (2004) 

Police  Spottiswoode (2000) 
Wisniewski and Dickson (2001) 
Stone (2002) 
Drake and Simper (2004) 

Ports Sánchez et al. (2003) 
Clark et al. (2004) 
Lawrence and Richards (2004) 
Turner et al. (2004) 

Postal services Pimenta et al. (2000) 
Maruyama and Nakajima (2002) 
Borenstein et al. (2004) 

Public infrastructure Mamatzakis (2003) 
Martín et al. (2004) 
Paul et al. (2004) 
Salinas-Jiminez (2004) 

Rail transport Baños-Pino et al. (2002) 
Estache et al. (2002) 
Kennedy and Smith (2004) 
Loizides and Tsionas (2004) 

Real estate investment trusts Lewis et al. (2003) 
Anderson et al. (2004) 

Refuse collection and recycling Bosch et al. (2000) 
Worthington and Dollery (2001) 
Lozano et al. (2004) 

Sports Haas (2003) 
Lins et al. (2003) 
Fried et al. (2004) 
Amos et al. (2005) 

Stocks, mutual funds and hedge funds Basso and Funari (2003) 
Abad et al. (2004) 
Chang (2004) 
Troutt et al. (2005) 

Tax administration Serra (2003) 
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Telecommunications Guedes de Avellar et al. (2002) 
Pentzaroupoulos and Giokas (2002) 
Façanha and Resende (2004) 
Uri (2004) 

Urban transit De Borger et al. (2002) 
Dalen and Gómez-Lobo (2003) 
Jörss et al. (2004) 
Odeck and Alkadi (2004) 

Water distribution Thanassoulis (2000) 
Fu and Huang (2002) 
Corton (2003) 
Tupper and Resende (2004) 

World Health Organization Hollingsworth and Wildman (2003) 
Richardson et al. (2003) 
Greene (2004) 
Lauer et al. (2004) 

 
 
 
1.3  Definitions and Measures of Economic Efficiency 
 
Economic efficiency has technical and allocative components. The technical 
component refers to the ability to avoid waste, either by producing as much 
output as technology and input usage allow or by using as little input as required 
by technology and output production. Thus the analysis of technical efficiency 
can have an output augmenting orientation or an input conserving orientation. 
The allocative component refers to the ability to combine inputs and/or outputs in 
optimal proportions in light of prevailing prices. Optimal proportions satisfy the 
first-order conditions for the optimization problem assigned to the production unit. 
 
 Koopmans (1951) provided a formal definition of technical efficiency: a 
producer is technically efficient if an increase in any output requires a reduction 
in at least one other output or an increase in at least one input, and if a reduction 
in any input requires an increase in at least one other input or a reduction in at 
least one output. Thus a technically inefficient producer could produce the same 
outputs with less of at least one input, or could use the same inputs to produce 
more of at least one output. 
 
 Debreu (1951) and Farrell (1957) introduced a measure of technical 
efficiency. With an input conserving orientation their measure is defined as (one 
minus) the maximum equiproportionate (i.e., radial) reduction in all inputs that is 
feasible with given technology and outputs. With an output augmenting 
orientation their measure is defined as the maximum radial expansion in all 
outputs that is feasible with given technology and inputs. In both orientations a 
value of unity indicates technical efficiency because no radial adjustment is 
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feasible, and a value different from unity indicates the severity of technical 
inefficiency.  
 
 In order to relate the Debreu-Farrell measures to the Koopmans definition, 
and to relate both to the structure of production technology, it is useful to 
introduce some notation and terminology. Let producers use inputs x = (x1,…,xN) 
∈ RN

+ to produce outputs y = (y1,…,yM) ∈ RM
+. Production technology can be 

represented by the production set 
 
 T = {(y,x}: x can produce y}.      (1.1) 
 
Koopmans’ definition of technical efficiency can now be stated formally as (y,x) ∈ 
T is technically efficient if, and only if, (y’,x’) ∉ T for (y’,-x’) ≥ (y,-x). 
 

Technology can also be represented by input sets 
 
 L(y) = {x: (y,x) ∈ T},        (1.2) 
 
which for every y ∈ RM

+ have input isoquants 
 
 I(y) = {x: x ∈ L(y), λx ∉ L(y), λ < 1}     (1.3) 
 
and input efficient subsets 
 
 E(y) = {x: x ∈ L(y), x’ ∉ L(y), x’ ≤ x},     (1.4) 
 
and the three sets satisfy E(y) ⊆ I(y) ⊆ L(y).  
 

Shephard (1953) introduced the input distance function to provide a 
functional representation of production technology. The input distance function is 

 
DI(y,x) = max {λ: (x/λ) ∈ L(y)}.      (1.5) 
 

For x ∈ L(y), DI(y,x) ≧ 1, and for x ∈ I(y), DI(y,x) = 1. Given standard assumptions 
on T, the input distance function DI(y,x) is nonincreasing in y, and nondecreasing, 
homogeneous of degree +1 and concave in x.  
 

The Debreu-Farrell input-oriented measure of technical efficiency can now 
be given a somewhat more formal interpretation as the value of the function 
 
 TEI(y,x) = min {θ: θx ∈ L(y)},      (1.6) 
 
and it follows from (1.5) that 
 
 TEI(y,x) = 1/DI(y,x).        (1.7) 



 21 

 
For x ∈ L(y), TEI(y,x) ≦ 1, and for x ∈ I(y), TEI(y,x) = 1. 
 
 Since so much of efficiency measurement is oriented toward output 
augmentation, it is useful to replicate the above development in that direction. 
Production technology can be represented by output sets 
 
 P(x) = {y: (x,y) ∈ T},        (1.8) 
 
which for every x ∈ RN

+ have output isoquants 
 
 I(x) = {y: y ∈ P(x), λy ∉ P(x), λ > 1}     (1.9) 
 
and output efficient subsets 
 
 E(x) = {y: y ∈ P(x), y’ ∉ P(x), y’ ≥ y},     (1.10) 
 
and the three sets satisfy E(x) ⊆ I(x) ⊆ P(x).  
 

Shephard’s (1970) output distance function provides another functional 
representation of production technology. The output distance function is 

 
Do(x,y) = min {λ: (y/λ) ∈ P(x)}.      (1.11) 
 

For y ∈ P(x), Do(x,y) ≦ 1, and for y ∈ I(x), Do(x,y) = 1. Given standard 
assumptions on T, the output distance function Do(x,y) is nonincreasing in x, and 
nondecreasing, homogeneous of degree +1 and convex in y. 
 

The Debreu-Farrell output-oriented measure of technical efficiency can 
now be given a somewhat more formal interpretation as the value of the function 
 
 TEo(x,y) = max {φ: φy ∈ P(x)},      (1.12) 
 
and it follows from (1.11) that 
 
 TEo(x,y) = [Do(x,y)]-1.       (1.13) 
 
For y ∈ P(x), TEo(y,x) ≧ 1, and for y ∈ I(x), TEo(x,y) = 1. (Caution: some authors 
replace (1.12) and (1.13) with TEo(x,y) = [max {φ: φy ∈ P(x)}]-1 = Do(x,y), so that 
TEo(x,y) ≦ 1 just as TEI(y,x) ≦ 1. We follow the convention of defining efficiency of 
any sort as the ratio of optimal to actual. Consequently TEI(y,x) ≦ 1 and TEo(y,x) 

≧ 1.) 
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 The foregoing analysis presumes that M>1, N>1. In the single input case 
 
 DI(y,x) = x/g(y) ≧ 1 ⇔ x ≧ g(y),      (1.14) 
 
where g(y) = min{x: x ∈ L(y)} is an input requirement frontier that defines the 
minimum amount of scalar input x required to produce output vector y. In this 
case the input-oriented measure of technical efficiency (1.7) becomes the ratio of 
minimum to actual input  
 
 TEI(y,x) = 1/DI(y,x) = g(y)/x ≦ 1.      (1.15) 
 
In the single output case 
 
 Do(x,y) = y/f(x) ≦ 1 ⇔ y ≦ f(x),      (1.16) 
 
where f(x) = max{y: y ∈ P(x)} is a production frontier that defines the maximum 
amount of scalar output that can be produced with input vector x. In this case the 
output-oriented measure of technical efficiency in (1.13) becomes the ratio of 
maximum to actual output 
 

TEo(x,y) = [Do(x,y)]-1 = f(x)/y ≧ 1.      (1.17) 
 

The two technical efficiency measures are illustrated in Figures 1.4 - 1.6. 
As a preview of things to come, technology is smooth in Figure 1.4 and 
piecewise linear in Figures 1.5 and 1.6. This reflects different approaches to 
using data to estimate technology. The econometric approach introduced in 
Section 1.5 and developed in Chapter 2 estimates smooth parametric frontiers, 
while the mathematical programming approach introduced in Section 1.6 and 
developed in Chapter 3 estimates piecewise linear nonparametric frontiers. 

 
In Figure 1.4 producer A is located on the interior of T, and its efficiency 

can be measured horizontally with an input conserving orientation using (1.6) or 
vertically with an output augmenting orientation using (1.12). If an input 
orientation is selected, TEI(yA,xA) = θxA/xA ≦ 1, while if an output orientation is 

selected, TEo(xA,yA) = φyA/yA ≧ 1. 
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It is also possible to combine the two directions by simultaneously 
expanding outputs and contracting inputs, either hyperbolically or along a right 
angle, to arrive at an efficient point on the surface of T between (yA,θxA) and 
(φyA,xA). A hyperbolic measure of technical efficiency is defined as 

 
TEH(y,x) = max {α: (αy,x/α) ∈ T} ≧ 1,     (1.18) 
 

and TEH(y,x) is the reciprocal of a hyperbolic distance function DH(y,x). Under 
constant returns to scale, TEH(y,x) = [TEo(x,y)]2 = [TEI(y,x)]-2, and TEH(y,x) is dual 
to a profitability function. One version of a directional measure of technical 
efficiency is defined as 
 
 TED(y,x) = max {β: [(1+β)y,(1-β)x] ∈ T} ≧ 0,    (1.19) 

 
and TED(y,x) is equal to a directional distance function DD(y,x). Even without 
constant returns to scale, TED(y,x) can be related to TEo(x,y) and TEI(y,x), and is 
dual to a profit function. The directional measure and its underlying directional 
distance function are employed to good advantage in Chapter 5. 
 

In Figure 1.5 input vectors xA and xB are on the interior of L(y), and both 
can be contracted radially and still remain capable of producing output vector y. 
Input vectors xC and xD cannot be contracted radially and still remain capable of 
producing output vector y because they are located on the input isoquant I(y). 
Consequently TEI(y,xC) = TEI(y,xD) = 1 > max {TEI(y,xA), TEI(y,xB)}. Since the 

  y 
 
 
 
             (φyA,xA) •  T 
  
 
     
        •                 • (yA,xA)  
         (yA,θxA) 
 
 
             x 
 

Figure 1.4 Technical Efficiency 
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radially scaled input vector θBxB contains slack in input x2, there may be some 
hesitancy in describing input vector θBxB as being technically efficient in the 
production of output vector y. No such problem occurs with radially scaled input 
vector θAxA. Thus TEI(y,θAxA) = TEI(y,θBxB) = 1 even though θAxA ∈ E(y) but θBxB 
∉ E(y). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             
 
  
 

 
 
 

Figure 1.6 tells exactly the same story, but with an output orientation. 
Output vectors yC and yD are technically efficient given input usage x, and output 
vectors yA and yB are not. Radially scaled output vectors φAyA and φByB are 
technically efficient, even though slack in output y2 remains at φByB. Thus 
TEo(x,φAyA) = TEo(x,φByB) = 1 even though φAyA ∈ E(x) but φByB ∉ E(x). 
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Figure 1.5 Input-Oriented Technical Efficiency 



 25 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
The Debreu-Farrell measures of technical efficiency are widely used. 

Since they are reciprocals of distance functions, they satisfy several nice 
properties (as noted first by Shephard (1970), and most thoroughly by Russell 
(1988, 1990)). Among these properties are 

• TEI(y,x) is homogeneous of degree -1 in inputs, and TEo(x,y) is 
homogeneous of degree -1 in outputs 

• TEI(y,x) is weakly monotonically decreasing in inputs, and TEo(x,y) is 
weakly monotonically decreasing in outputs 

• TEI(y,x) and TEo(x,y) are invariant with respect to changes in units of 
measurement 

 
On the other hand, they are not perfect. A notable feature of the Debreu-

Farrell measures of technical efficiency is that they do not coincide with 
Koopmans’ definition of technical efficiency. Koopmans’ definition is demanding, 
requiring the absence of coordinate-wise improvements (simultaneous 
membership in both efficient subsets), while the Debreu-Farrell measures require 
only the absence of radial improvements (membership in isoquants). Thus the 
Debreu-Farrell measures correctly identify all Koopmans-efficient producers as 
being technically efficient, they also identify as being technically efficient any 
other producers located on an isoquant outside the efficient subset. 
Consequently Debreu-Farrell technical efficiency is necessary, but not sufficient, 
for Koopmans technical efficiency. The possibilities are illustrated in Figures 1.5 
and 1.6, where θBxB and φByB satisfy the Debreu-Farrell conditions but not the 
Koopmans requirement because slacks remain at the optimal radial projections. 
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Figure 1.6 Output-Oriented Technical Efficiency 
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Much has been made of this property of the Debreu-Farrell measures, but 
we think the problem is exaggerated. The practical significance of the problem 
depends on how many observations lie outside the cone spanned by the relevant 
efficient subset. Hence the problem disappears in much econometric analysis, in 
which the parametric form of the function used to estimate production technology 
(e.g., Cobb-Douglas, but not flexible functional forms such as translog) imposes 
equality between isoquants and efficient subsets, thereby eliminating slack by 
assuming it away. The problem assumes greater significance in the 
mathematical programming approach, in which the nonparametric form of the 
frontier used to estimate the boundary of the production set imposes slack by a 
strong (or free) disposability assumption. If the problem is deemed significant in 
practice, then it is possible to report Debreu-Farrell efficiency scores and slacks 
separately, side by side. This is rarely done. Instead, much effort has been 
directed toward finding a “solution” to the problem. Three strategies have been 
proposed. 

• Replace the radial Debreu-Farrell measure with a nonradial measure 
that projects to efficient subsets (Färe and Lovell (1978)). This 
guarantees that an observation (or its projection) is technically efficient if, 
and only if, it is efficient in Koopmans’ sense. However nonradial 
measures gain this “indication” property at the considerable cost of 
failing the homogeneity property. 

• Develop a measure that incorporates slack and the radial component   
into an inclusive measure of technical efficiency (Cooper et al. (1999)). 
This measure also gains the indication property, but it has its own 
problems, including the possibility of negative values.  

• Eliminate slack altogether by enforcing strictly positive marginal rates of 
substitution and transformation. We return to this possibility in Section 
1.6.4, in a different setting. 

 
 Happily, there is no such distinction between definitions and measures of 

economic efficiency. Defining and measuring economic efficiency requires the 
specification of an economic objective and information on relevant prices. If the 
objective of a production unit (or the objective assigned to it by the analyst) is 
cost minimization, then a measure of cost efficiency is provided by the ratio of 
minimum feasible cost to actual cost. This measure depends on input prices. It 
attains a maximum value of unity if the producer is cost efficient, and a value less 
than unity indicates the degree of cost inefficiency. A measure of input allocative 
efficiency is obtained residually as the ratio of the measure of cost efficiency to 
the input-oriented measure of technical efficiency. The modification of this Farrell 
decomposition of cost efficiency to the output-oriented problem of decomposing 
revenue efficiency is straightforward. Modifying the procedure to accommodate 
alternative behavioral objectives is sometimes straightforward and occasionally 
challenging. So is the incorporation of regulatory and other non-technological 
constraints that impede the pursuit of some economic objective. 
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Suppose that producers face input prices w = (w1,…,wN) ∈ RN
++ and seek 

to minimize cost. Then a minimum cost function, or a cost frontier, is defined as 
 
c(y,w) = minx {wTx: DI(y,x) ≧ 1}.        (1.20) 
 

If the input sets L(y) are closed and convex, and if inputs are freely disposable, 
the cost frontier is dual to the input distance function in the sense of (1.20) and 
 
 DI(y,x) = minw {wTx: c(y,w) ≧ 1}.      (1.21) 
 
A measure of cost efficiency is provided by the ratio of minimum cost to actual 
cost 
 
 CE(x,y,w) = c(y,w) / wTx.       (1.22) 
 
A measure of input allocative efficiency is obtained from (1.6) and (1.22) as 
 
 AEI(x,y,w) = CE(x,y,w) / TEI(y,x).      (1.23) 

 
CE(x,y,w) and its two components are bounded above by unity, and CE(x,y,w) = 
TEI(y,x) × AEI(x,y,w). 
 
 The measurement and decomposition of cost efficiency is illustrated in 
Figures 1.7 and 1.8. In Figure 1.7 the input vector xE minimizes the cost of 
producing output vector y at input prices w, and so wTxE = c(y,w). The cost 
efficiency of xA is given by the ratio wTxE/wTxA = c(y,w)/wTxA. The Debreu-Farrell 
measure of the technical efficiency of xA is given by θA = θAxA/xA = wT(θAxA)/wTxA. 
The allocative efficiency of xA is determined residually as the ratio of cost 
efficiency to technical efficiency, or by the ratio wTxE/wT(θAxA). The magnitudes of 
technical, allocative and cost inefficiency are all measured by ratios of price-
weighted input vectors. The direction of allocative inefficiency is revealed by the 
input vector difference (xE - θAxA). An alternative view of cost efficiency is 
provided by Figure 1.8, in which CE(xA,yA,w) = c(yA,w)/wTxA.  
 
 
 
 
 
 
 
 
 
 
 
 



 28 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
x2 
 
 
            I(y) 
 
 
          xE • 
 
     
      • xA 

           •   θAxA 

 
 
       x1 

 
Figure 1.7 Cost Efficiency I 
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Figure 1.8 Cost Efficiency II 
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The measurement and decomposition of cost efficiency is illustrated again in 
Figure 1.9, for the case in which the efficient subset is a proper subset of the 
isoquant. The analysis proceeds as above, with a twist. The cost efficiency of 
input vector xA now has three components, a radial technical component 
[wT(θAxA)/wTxA], an input slack component [wTxB/wT(θAxA)], and an allocative 
component [wTxE/wTxB]. With input price data all three components can be 
identified, although they rarely are. The slack component is routinely assigned to 
the allocative component. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Suppose next that producers face output prices p = (p1,…,pM) ∈ RM
++ and 

seek to maximize revenue. Then a maximum revenue function, or a revenue 
frontier, is defined as 

 
r(x,p) = maxy {pTy: Do(x,y) ≦ 1},        (1.24) 

 
If the output sets P(x) are closed and convex, and if outputs are freely 
disposable, the revenue frontier is dual to the output distance function in the 
sense of (1.24) and 
 
 Do(x,y) = maxp (pTy: r(x,p) ≦ 1}.      (1.25) 
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Figure 1.9 Cost Efficiency III 
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A measure of revenue efficiency is provided by the ratio of maximum revenue to 
actual revenue 
 
 RE(y,x,p) = r(x,p) / pTy.       (1.26) 
 
A measure of output allocative efficiency is obtained from (1.12) and (1.26) as 
 

 AEo(y,x,p) = RE(y,x,p) / TEo(x,y).     (1.27) 
 

RE(y,x,p) and its two components are bounded below by unity, and RE(y,x,p) = 
TEo(x,y) × AEo(y,x,p). 
 

The measurement and decomposition of revenue efficiency in Figures 
1.10 and 1.11 follows exactly the same steps. The measurement and 
decomposition of revenue efficiency in the presence of output slack follows along 
similar lines as in Figure 1.9. Revenue loss attributable to output slack is typically 
assigned to the output allocative efficiency component of revenue efficiency. 
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Figure 1.10 Revenue Efficiency I 
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 Cost efficiency and revenue efficiency are important performance 
indicators, but each reflects just one dimension of a firm’s overall performance. A 
measure of profit efficiency captures both dimensions, and relates directly to the 
bottom line discussed in Section 1.1. Suppose that producers face output prices 
p ∈ RM

++ and input prices w ∈ RN
++, and seek to maximize profit. The maximum 

profit function, or profit frontier, is defined as 
 
 π(p,w) = maxy,x {(pTy - wTx): (y,x) ∈ T}.     (1.28) 
 
If the production set T is closed and convex, and if outputs and inputs are freely 
disposable, the profit frontier is dual to T in the sense of (1.28) and 
 
 T = {(y,x): (pTy - wTx) ≦ π(p,w) ∀ p∈RM

++, w∈RN
++}.   (1.29) 

 
A measure of profit efficiency is provided by the ratio of maximum profit to actual 
profit 
 
 πE(y,x,p,w) = π(p,w)/(pTy - wTx),      (1.30) 
 
provided (pTy - wTx) > 0, in which case πE(y,x,p,w) is bounded below by unity. 
The decomposition of profit efficiency is partially illustrated by Figure 1.12, which 
builds on Figure 1.4. Profit at (yA,xA) is less than maximum profit at (yE,xE), and 
two possible decompositions of profit efficiency are illustrated. One takes an 
input-conserving orientation to the measurement of technical efficiency, and the 
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Figure 1.11 Revenue Efficiency II 
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residual allocative component follows the path from (yA,θxA) to (yE,xE). The other 
takes an output-augmenting orientation to the measurement of technical 
efficiency, with residual allocative component following the path from (φyA,xA) to 
(yE,xE). In both approaches the residual allocative component contains an input 
allocative efficiency component and an output allocative efficiency component, 
although the magnitudes of each component can differ in the two approaches. 
These two components are hidden from view in the two-dimensional Figure 1.12. 
In both approaches the residual allocative efficiency component also includes a 
scale component, which is illustrated in Figure 1.12. The direction of the scale 
component is sensitive to the orientation of the technical efficiency component, 
which imposes a burden on the analyst to get the orientation right. Because profit 
efficiency involves adjustments to both outputs and inputs, hyperbolic and 
directional technical efficiency measures are appealing in this context. Whatever 
the orientation of the technical efficiency measure, profit inefficiency is 
attributable to technical inefficiency, to an inappropriate scale of operation, to the 
production of an inappropriate output mix, and to the selection of an 
inappropriate input mix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 We conclude this Section with a brief discussion of dominance. Producer 
A dominates all other producers for which (yA,-xA) ≥ (y,-x). This notion is a direct 
application of Koopmans’ definition of efficiency, in which producer A is “more 
efficient” than all other producers it dominates. Reversing the definition, producer 
A is dominated by all other producers for which (y,-x) ≥ (yA,-xA). In Figure 1.4 
producer A is dominated by all producers to the northwest ∈ T because they use 
no more input to produce at least as much output. Similar dominance 
relationships can be constructed in Figures 1.5 and 1.6. In each case dominance 
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Figure 1.12 Profit Efficiency 
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is a physical, or technical, relationship. However dominance can also be given a 
value interpretation. In Figure 1.8 producer A is dominated (in a cost sense) by 
all other producers to the southeast on or above c(y,w) because they produce at 
least as much output at no more cost, and in Figure 1.11 producer A is 
dominated (in a revenue sense) by all other producers to the northwest on or 
beneath r(x,p) because they use no more input to generate at least as much 
revenue. 
 
 Dominance is an under-utilized concept in the field of producer 
performance evaluation, where the emphasis is on efficiency. This neglect is 
unfortunate, because dominance information offers a potentially useful 
complement to an efficiency evaluation, as Tulkens and Vanden Eeckaut (1995, 
1999) have demonstrated. Inefficient producers can have many dominators, and 
hence many potential role models from which to learn. To cite one example, 
Fried et al. (1993) report an average of 22 dominators for each of nearly 9,000 
US credit unions.  
 

The identification of dominators can constitute the initial step in a 
benchmarking exercise. It is possible that dominators utilize superior business 
practices that are transferable to the benchmarking producer. However it is also 
possible that dominance is due to a more favorable operating environment. 
Although this may be cold comfort to the benchmarking business, it can be very 
useful to the analyst who does not want to confuse variation in performance with 
variation in the operating environment. Incorporating variation in the operating 
environment is an important part of any performance evaluation exercise, and 
techniques for doing so are discussed below and in subsequent Chapters. 
 
 
 
1.4  Techniques for Efficiency Measurement 
 
Efficiency measurement involves a comparison of actual performance with 
optimal performance located on the relevant frontier. Since the true frontier is 
unknown, an empirical approximation is needed. The approximation is frequently 
dubbed a “best practice” frontier. 
 

The economic theory of production is based on production frontiers and 
value duals such as cost, revenue and profit frontiers, and on envelope 
properties yielding cost minimizing input demands, revenue maximizing output 
supplies, and profit maximizing output supplies and input demands. Emphasis is 
placed on optimizing behavior subject to constraint. However for over 75 years, 
at least since Cobb and Douglas started running regressions, the empirical 
analysis of production has been based on a least squares statistical methodology 
by which estimated functions of interest pass through the data and estimate 
mean performance. Thus the frontiers of theory have become the functions of 
analysis, interest in enveloping data with frontiers has been replaced with the 
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practice of intersecting data with functions, and unlikely efficient outcomes have 
been neglected in favor of more likely but less efficient outcomes, all as attention 
has shifted from extreme values to central tendency. 

 
If econometric analysis is to be brought to bear on the investigation of the 

structure of economic frontiers, and on the measurement of efficiency relative to 
these frontiers, then conventional econometric techniques require modification. 
The modifications that have been developed, improved and implemented in the 
last three decades run the gamut from trivial to sophisticated. Econometric 
techniques are introduced in Section 1.5 and developed in detail in Chapter 2. 

 
In sharp contrast to econometric techniques, mathematical programming 

techniques are inherently enveloping techniques, and so they require little or no 
modification to be employed in the analysis of efficiency. This makes them 
appealing, but they went out of favor long ago in the economics profession. Their 
theoretical appeal has given way to a perceived practical disadvantage, their 
ostensible failure to incorporate the statistical noise that drives conventional 
econometric analysis. This apparent shortcoming notwithstanding, they remain 
popular in the fields of management science and operations research, and they 
are making a comeback in economics. Programming techniques are introduced 
in Section 1.6 and developed in detail in Chapter 3.  
 
 The econometric approach to the construction of frontiers and the 
estimation of efficiency relative to the constructed frontiers has similarities and 
differences with the mathematical programming approach. Both are analytically 
rigorous benchmarking exercises that exploit the distance functions introduced in 
Section 1.3 to measure efficiency relative to a frontier. However the two 
approaches use different techniques to envelop data more or less tightly in 
different ways. In doing so they make different accommodations for statistical 
noise, and for flexibility in the structure of production technology. It is these two 
different accommodations that have generated debate about the relative merits 
of the two approaches. At the risk of oversimplification, the differences between 
the two approaches boil down to two essential features. 

• The econometric approach is stochastic. This enables it to attempt to 
distinguish the effects of noise from those of inefficiency, thereby 
providing the basis for statistical inference. 

• The programming approach is nonparametric. This enables it to avoid 
confounding the effects of misspecification of the functional form (of 
both technology and inefficiency) with those of inefficiency. 

 
 A decade or more ago, the implication drawn from these two features was 
that the programming approach was non-stochastic and the econometric 
approach was parametric. This had a disturbing consequence. If efficiency 
analysis is to be taken seriously, producer performance evaluation must be 
robust to both statistical noise and specification error. Neither approach was 
thought to be robust to both. 
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Happily, knowledge has progressed and distinctions have blurred. To 

praise one approach as being stochastic is not to deny that the other is 
stochastic as well, and to praise one approach as being nonparametric is not to 
damn the other as being rigidly parameterized. Recent explorations into the 
statistical foundations of the programming approach have provided the basis for 
statistical inference, and recent applications of flexible functional forms and semi-
parametric, non-parametric and Bayesian techniques have freed the econometric 
approach from its parametric straitjacket. Both techniques are more robust than 
previously thought. The gap is no longer between one technique and the other, 
but between best practice knowledge and average practice implementation. The 
challenge is to narrow the gap. 

 
It is worth asking whether the two techniques tell consistent stories when 

applied to the same data. The answer seems to be that the higher the quality of 
the data, the greater the concordance between the two sets of efficiency 
estimates. Of the many comparisons available in the literature, we recommend 
Bauer et al. (1998), who use US banking data, and Cummins and Zi (1998), who 
use US life insurance company data. Both studies find strong positive rank 
correlations of point estimates of efficiency between alternative pairs of 
econometric models and between alternative pairs of programming models, and 
weaker but nontheless positive rank correlations of point estimates of efficiency 
between alternative pairs of econometric and programming models. 
 
 Chapters 2 and 3 develop the two approaches, starting with their basic 
formulations and progressing to more advanced methods. Chapter 4 recasts the 
parametric econometric approach of Chapter 2 into a nonparametric statistical 
framework, and explores the statistical foundations of the programming approach 
of Chapter 3. In addition to these Chapters, we recommend comprehensive 
treatments of the econometric approach by Kumbhakar and Lovell (2000), and of 
the programming approach by Cooper et al. (2000). Both contain extensive 
references to analytical developments and empirical applications. 
 
 
 
1.5  The Econometric Approach to Efficiency Measurement 
 
Econometric models can be categorized according to the type of data they use 
(cross-section or panel), the type of variables they use (quantities only, or 
quantities and prices), and the number of equations in the model. In Section 
1.5.1 we discuss the most widely used model, the single equation cross-section 
model. In Section 1.5.2 we progress to panel data models. In both contexts the 
efficiency being estimated can be either technical or economic. In Section 1.5.3 
we discuss multiple equation models, and in Section 1.5.4 we discuss shadow 
price models, which typically involve multiple equations. In these two contexts the 
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efficiency being estimated is economic, with a focus on allocative inefficiency and 
its cost. 
 
 
1.5.1  Single equation cross-section models 
 
Suppose producers use inputs x ∈ RN

+ to produce scalar output y ∈ R+, with 
technology 
 
 yi ≦ f(xi;β)exp{vi},        (1.31) 
 
where β is a parameter vector characterizing the structure of production 
technology and i = 1,…,I indexes producers. The deterministic production frontier 
is f(xi;β). Observed output yi is bounded above by the stochastic production 
frontier [f(xi;β)exp{vi}], with the random disturbance term vi ⋛ 0 included to 
capture the effects of statistical noise on observed output. The stochastic 
production frontier reflects what is possible [f(xi;β)] in an environment influenced 
by external events, favorable and unfavorable, beyond the control of producers 
[exp{vi}]. 
 
 The weak inequality in (1.31) can be converted to an equality through the 
introduction of a second disturbance term to create 
 
 yi = f(xi;β)exp{vi - ui},       (1.32) 
 
 where the disturbance term ui ≧ 0 is included to capture the effect of technical 
inefficiency on observed output. 
 
 Recall from Section 1.3 that the Debreu-Farrell output-oriented measure of 
technical efficiency is the ratio of maximum possible output to actual output (and 
that some authors use the reciprocal of this measure). Applying definition (1.17) 
to (1.32) yields 
 

TEo(xi,yi) = f(xi;β)exp{vi} / yi = exp{ui} ≧ 1,     (1.33) 
 
because ui ≧ 0. The problem is to estimate TEo(xi,yi). This requires estimation of 
(1.32), which is easy and can be accomplished in a number of ways depending 
on the assumptions one is willing to make. It also requires a decomposition of the 
residuals into separate estimates of vi and ui, which is not so easy. 
 
  One approach, first suggested by Winsten (1957) and now known as 
corrected ordinary least squares (COLS), is to assume that ui = 0, i = 1,…,I, and 
that vi ~ N(0,σv

2). In this case (1.32) collapses to a standard regression model 
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that can be estimated consistently by OLS. The estimated production function, 
which intersects the data, is then shifted upward by adding the maximum positive 
residual to the estimated intercept, creating a production frontier that bounds the 
data from above. The residuals are corrected in the opposite direction, and 
become iv̂ = vi – vi

max ≦ 0, i = 1,…,I. The technical efficiency of each producer is 
estimated from 

  
 oÊT (xi,yi) = exp{- iv̂ } ≧ 1,       (1.34) 
 
and oÊT (xi,yi) - 1 ≧ 0 indicates the percent by which output can be expanded, on 
the assumption that ui = 0, i = 1,…,I. 
 

The producer having the largest positive OLS residual supports the COLS 
production frontier. This makes COLS vulnerable to outliers, although ad hoc 
sensitivity tests have been proposed. In addition, the structure of the COLS 
frontier is identical to the structure of the OLS function, apart from the shifted 
intercept. This structural similarity rules out the possibility that efficient producers 
are efficient precisely because they exploit available economies and substitution 
possibilities that average producers do not. The assumption that best practice is 
just like average practice, but better, defies both common sense and much 
empirical evidence. Finally, it is troubling that efficiency estimates for all 
producers are obtained by suppressing the inefficiency error component ui, and 
are determined exclusively by the single producer having the most favorable 
noise vi

max. The term exp{ui} in (1.33) is proxied by the term exp{- iv̂ } in (1.34). 
Despite these reservations, and additional concerns raised in Chapters 2 and 4, 
COLS is widely used, presumably because it is easy.  
 
 A second approach, suggested by Aigner and Chu (1968), is to make the 
opposite assumption that vi = 0, i = 1,…,I. In this case (1.32) collapses to a 
deterministic production frontier that can be estimated by linear or quadratic 
programming techniques that minimize either Σiui or Σiui

2, subject to the 
constraint that ui = ln[f(xi;β) / yi] ≧ 0 for all producers. The technical efficiency of 
each producer is estimated from 
 

 oÊT (xi,yi) = exp{ iû } ≧ 1,       (1.35) 
 
and oÊT (xi,yi) - 1 ≧ 0 indicates the percent by which output can be expanded, on 
the alternative assumption that vi = 0, i = 1,…,I.  The iû  are estimated from the 

slacks in the constraints [lnf(xi;β) - lnyi ≧ 0, i = 1,…,I] of the program. Although it 
appears that the term exp{ iû } in (1.35) coincides with the term exp{ui} in (1.33), 
the expression in (1.35) is conditioned on the assumption that vi = 0, while the 
expression in (1.33) is not. In addition, since no distributional assumption is 
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imposed on ui ≧ 0, statistical inference is precluded and consistency cannot be 
verified. However Schmidt (1976) showed that the linear programming “estimate” 
of β is maximum likelihood if the ui follow an exponential distribution, and that the 
quadratic programming “estimate” of β is maximum likelihood if the ui follow a 
half-normal distribution. Unfortunately we know virtually nothing about the 
statistical properties of these estimators, even though they are maximum 
likelihood. However Greene (1980) showed that an assumption that the ui follow 
a gamma distribution generates a well-behaved likelihood function that allows 
statistical inference, although this model does not correspond to any known 
programming problem. Despite the obvious statistical drawback resulting from its 
deterministic formulation, the programming approach is also widely used. One 
reason for its popularity is that it is easy to append monotonicity and curvature 
constraints to the program, as Hailu and Veeman (2000) have done in their study 
of water pollution in the Canadian pulp and paper industry. 
 
 The third approach, suggested independently by Aigner et al. (1977) and 
Meeusen and van den Broeck (1977), attempts to remedy the shortcomings of 
the first two approaches, and is known as stochastic frontier analysis (SFA). In 
this approach it is assumed that vi ~ N(0,σv

2), and that ui ≧ 0 follows either a half-
normal or an exponential distribution. The motive behind these two distributional 
assumptions is to parsimoniously parameterize the notion that relatively high 
efficiency is more likely than relatively low efficiency. After all, the structure of 
production is parameterized, so we might as well parameterize the inefficiency 
distribution too. In addition, it is assumed that the vi and the ui are distributed 
independently of each other, and of xi. OLS can be used to obtain consistent 
estimates of the slope parameters, but not the intercept because E(vi - ui) = E(-ui) 
≦ 0. However the OLS residuals can be used to test for negative skewness, 
which is a test for the presence of variation in technical inefficiency. If evidence of 
negative skewness is found, OLS slope estimates can be used as starting values 
in a maximum likelihood routine. 
 
 Armed with the distributional and independence assumptions, it is possible 
to derive the likelihood function, which can be maximized with respect to all 
parameters (β, σv

2 and σu
2) to obtain consistent estimates of β. However even 

with this information neither team was able to estimate TEo(xi,yi) in (1.33) 
because they were unable to disentangle the separate contributions of vi and ui 
to the residual. Jondrow et al. (1982) provided an initial solution, by deriving the 
conditional distribution of [-ui|(vi - ui)], which contains all the information (vi - ui) 
contains about -ui. This enabled them to derive the expected value of this 
conditional distribution, from which they proposed to estimate the technical 
efficiency of each producer from 
   

oÊT (xi,yi) = {exp{E[- iû |(vi - ui)]}}-1 ≧ 1,     (1.36) 
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which is a function of the MLE parameter estimates. Later Battese and Coelli 
(1988) proposed to estimate the technical efficiency of each producer from 
   

oÊT (xi,yi) = {E[exp{- iû }|(vi - ui)]}-1 ≧ 1,     (1.37) 
 
which is a slightly different function of the same MLE parameter estimates, and is 
preferred because - iû  in (1.36) is only the first order term in the power series 
approximation to exp{- iû } in (1.37).  
 
 Unlike the first two approaches, which suppress either ui or vi, SFA 
sensibly incorporates both noise and inefficiency into the model specification. 
The price paid is the need to impose distributional and independence 
assumptions, the prime benefit being the ability to disentangle the two error 
components. The single parameter half-normal and exponential distributions can 
be generalized to more flexible two parameter truncated normal and gamma 
distributions, as suggested by Stevenson (1980) and Greene (1980), although 
they rarely are. The independence assumptions seem essential to the MLE 
procedure. The fact that they can be relaxed in the presence of panel data 
provides an initial appreciation of the value of panel data, to which we return in 
Section 1.5.2. 
 

The efficiency estimates obtained from (1.36) and (1.37) are unbiased, but 
their consistency has been questioned, not because they converge to the wrong 
values, but because in a cross section we get only one look at each producer, 
and the number of looks cannot increase. However a new contrary claim of 
consistency is put forth in Chapter 2. The argument is simple, and runs as 
follows. The technical efficiency estimates in (1.36) and (1.37) are conditioned on 
MLEs of (vi - ui) = lnyi – lnf(xi;β), and since ( is estimated consistently by MLE, so is 
technical efficiency, even in a cross section. 
 
 For over a decade individual efficiencies were estimated using either (1.36) or 
(1.37). Hypothesis tests frequently were conducted on (, and occasionally on (u2/(v2 (or 
some variant thereof) to test the statistical significance of efficiency variation. However 
we did not test hypotheses on either estimator of TEo(xi,yi) because we did not realize 
that we had enough information to do so. We paid the price of imposing distributions on 
vi and ui, but we did not reap one of the benefits; we did not exploit the fact that 
distributions imposed on vi and ui create distributions for [-ui|(vi - ui)] and [exp{-ui}|(vi - 
ui)], which can be used to construct confidence intervals and to test hypotheses on 
individual efficiencies. This should have been obvious all along, but Horrace and 
Schmidt (1996) and Bera and Sharma (1999) were the first to develop confidence 
intervals for efficiency estimators. The published confidence intervals we have seen are 
depressingly wide, presumably because estimates of (u2/(v2 are relatively small. In such 
circumstances the information contained in a ranking of estimated efficiency scores is 
limited, frequently to the ability to distinguish stars from strugglers. 
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 The preceding discussion has been based on a single output production frontier. 
However multiple outputs can be incorporated in a number of ways. 

( Estimate a stochastic revenue frontier, with pTy replacing y and (x,p) replacing 
x in (1.32). The one-sided error component provides the basis for a measure of 
revenue efficiency. Applications are rare. 

( Estimate a stochastic profit frontier, with (pTy - wTx) replacing y and (p,w) 
replacing x in (1.32). The one-sided error component provides the basis for a 
measure of profit efficiency. Estimation of profit frontiers is popular, especially 
in the financial institutions literature. Berger and Mester (1997) provide an 
extensive application to US banks. 

( Estimate a stochastic cost frontier, with wTx replacing y and (y,w) replacing x in 
(1.32). Since wTx ≧ c(y,w;β)exp{vi}, this requires changing the sign of the 
one-sided error component, which provides the basis for a measure of 
cost efficiency. Applications are numerous. 

• Estimate a stochastic input requirement frontier, with the roles of x and y 
in (1.32) being reversed. This also requires changing the sign of the one-
sided error component, which provides the basis for a measure of input 
use efficiency. Applications are limited to situations in which labor has a 
very large (variable?) cost share, or in which other inputs are not 
reported. Kumbhakar and Hjalmarsson (1995) provide an application to 
employment in Swedish social insurance offices. 

• Estimate a stochastic output distance function Do(x,y)exp{vi} ≦ 1 ⇒ 

Do(xi,yi;β)exp{vi - ui} = 1, ui ≧ 0. The one-sided error component provides 
the basis for an output-oriented measure of technical efficiency. Unlike 
the models above, a distance function has no natural dependent 
variable, and at least three alternatives have been proposed. Fuentes et 
al. (2001) and Atkinson et al. (2003) illustrate alternative specifications 
and provide applications to Spanish insurance companies and US 
railroads, respectively. 

• Estimate a stochastic input distance function DI(y,x)exp{vi} ≧ 1 ⇒ 

DI(yi,xi;β)exp{vi + ui} = 1, ui ≧ 0. Note the sign change of the one-sided 
error component, which provides the basis for an input-oriented measure 
of technical efficiency, and proceed as above. 

 
 In the preceding discussion interest has centered on the estimation of 
efficiency. A second concern, first raised in Section 1.2, involves the 
incorporation of potential determinants of efficiency. The determinants can 
include characteristics of the operating environment, and characteristics of the 
manager such as human capital endowments. The logic is that if efficiency is to 
be improved, we need to know what factors influence it, and this requires 
distinguishing the influences of the potential determinants from that of the inputs 
and outputs themselves. Two approaches have been developed. 
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 Let z ∈ RK be a vector of exogenous variables thought to be relevant to 
the production activity. One approach that has been used within and outside the 
frontier field is to replace f(xi;β) with f(xi,zi;β,γ). The most popular example 
involves z serving as a proxy for technical change that shifts the production (or 
cost) frontier. Another popular example involves the inclusion of stage length and 
load factor in the analysis of airline performance; both are thought to influence 
operating cost. Although z is relevant in the sense that it is thought to be an 
important characteristic of production activity, it does not influence the efficiency 
of production. The incorporation of potential influences on productive efficiency 
requires an alternative approach, in which z influences the distance of producers 
from the relevant frontier. 
 

In the old days it was common practice to adopt a two-stage approach to 
the incorporation of potential determinants of productive efficiency. In this 
approach efficiency was estimated in the first stage using either (1.36) or (1.37), 
and estimated efficiencies were regressed against a vector of potential influences 
in the second stage. Deprins and Simar (1989) were perhaps the first to question 
the statistical validity of this two-stage approach. Later Battese and Coelli (1995) 
proposed a single-stage model of general form 
 
 yi = f(xi;β)exp{vi - ui(zi;γ)},       (1.38) 
 
where ui(zi;γ) ≧ 0 and z is a vector of potential influences with parameter vector γ, 
and they showed how to estimate the model in SFA format. Later Wang and 
Schmidt (2002) analyzed alternative specifications for ui(zi;γ) in the single-stage 
approach; for example, either the mean or the variance of the distribution being 
truncated below at zero can be made a function of zi. They also provided detailed 
theoretical arguments, supported by compelling Monte Carlo evidence, 
explaining why both stages of the old two-stage procedure are seriously biased. 
Hopefully we will see no more two-stage SFA models.   
 
 
1.5.2 Single equation panel data models  
 
In a cross section each producer is observed once. If each producer is observed 
over a period of time, panel data techniques can be brought to bear on the 
problem. At the heart of the approach is the association of a “firm effect” from the 
panel data literature with a one-sided inefficiency term from the frontier literature. 
How this association is formulated, and how the model is estimated, are what 
distinguish one model from another. Whatever the model, the principal 
advantage of having panel data is the ability to observe each producer more than 
once. It should be possible to parlay this ability into “better” estimates of 
efficiency than can be obtained from a single cross section. 
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 Schmidt and Sickles (1984) were among the first to consider the use of 
conventional panel data techniques in a frontier context. We follow them by 
writing the panel data version of the production frontier model (1.32) as 
 
 yit = f(xit;β)exp{vit - ui},       (1.39) 
 
where a time subscript t = 1,…,T has been added to y, x and v, but not (yet) to u. 
We begin by assuming that technical efficiency is time-invariant, and not a 
function of exogenous influences. Four estimation strategies are available. 
 
 It is straightforward to adapt the cross-section MLE procedures developed 
in Section 1.5.1 to the panel data context, as Pitt and Lee (1981) first showed. 
Allowing ui to depend on potential influences is also straightforward, as Battese 
and Coelli (1995) demonstrated. Extending (1.39) by setting uit = uit(zit;γ) and 
specifying one of the elements of zit as a time trend or a time dummy allows 
technical inefficiency to be time-varying, which is especially desirable in long 
panels. MLE estimators of technical efficiency obtained from (1.36) and (1.37) 
are consistent in T and I. However MLE requires strong distributional and 
independence assumptions, and the availability of panel data techniques enables 
us to relax some of these assumptions.  
 
 The fixed effects model is similar to cross-section COLS. It imposes no 
distributional assumption on ui, and allows the ui to be correlated with the vit and 
the xit. Since the ui are treated as fixed, they become producer-specific intercepts 
βoi = (βo - ui) in (1.39), which can be estimated consistently by OLS. After 
estimation the normalization βo* = βoi

max generates estimates of iû  = βo* - βoi ≧ 0, 
and estimates of producer-specific technical efficiencies are obtained from 
   

oÊT (xi,yi) = [exp{- iû }]-1.       (1.40) 
 
These estimates are consistent in T and I, and they have the great virtue of 
allowing the ui to be correlated with the regressors. However the desirable 
property of consistency in T is offset by the undesirability of assuming time-
invariance of inefficiency in long panels. In addition, the fixed effects model has a 
potentially serious drawback. The firm effects are intended to capture variation in 
technical efficiency, but they also capture the effects of all phenomena that vary 
across producers but not through time, such as locational characteristics and 
regulatory regime.  
 
 The random effects model makes the opposite assumptions on the ui, 
which are allowed to be random, with unspecified distribution having constant 
mean and variance, but are assumed to be uncorrelated with the vit and the xit. 
This allows the inclusion of time-invariant regressors in the model. Defining βo** = 
βo - E(ui) and ui** = ui - E(ui), (1.39) can be estimated by GLS. After estimation, 
firm-specific estimates of ui** are obtained from the temporal means of the 
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residuals. Finally, these estimates are normalized to obtain estimates of iû  = 
ui**max

  - ui**, from which producer-specific estimates of technical efficiency are 
obtained from 
 

oÊT (xi,yi) = [exp{- iû }]-1.        (1.41) 
 
These estimates also are consistent in T and I. The main virtue of GLS is that it 
allows the inclusion of time-invariant regressors, whose impacts would be 
confounded with efficiency variation in a fixed effects model. 
 
 Finally, a Hausman-Taylor (1981) estimator can be adapted to (1.39). It is 
a mixture of the fixed effects and random effects estimators that allows the ui to 
be correlated with some, but not all, regressors, and can include time-invariant 
regressors.  
 
 We have explored the tip of the proverbial iceberg. Panel data 
econometrics is expanding rapidly, as is its application to frontier models. Details 
are provided in Chapter 2. 
 
 
1.5.3 Multiple equation models 
 
We begin by reproducing a model popularized long ago by Christensen and 
Greene (1976). The model is 
 
 ln(wTx)i = c(lnyi,lnwi;β) + vi 
 
 (wnxn/wTx)i = sn(lnyi,lnwi;β) + vni, n = 1,…,N-1.    (1.42) 
 
This system describes the behavior of a cost-minimizing producer, with the first 
equation being a cost function and the remaining equations exploiting 
Shephard’s (1953) lemma to generate cost-minimizing input cost shares. The 
errors (vi,vni) reflect statistical noise, and are assumed to be distributed 
multivariate normal with zero means. The original motivation for appending the 
cost share equations was to increase statistical efficiency in estimation, since 
they contain no parameters not appearing in the cost function. Variants on this 
multiple equation theme, applied to flexible functional forms such as translog, 
appear regularly in production (and consumption) economics. 
 
 The pursuit of statistical efficiency is laudable, but it causes difficulties 
when the objective of the exercise is the estimation of economic efficiency. We 
do not want to impose the assumption of cost minimization that drives 
Shephard’s lemma, so we transform the Christensen-Greene model (1.42) into a 
stochastic cost frontier model as follows: 
 
 ln(wTx)i = c(lnyi,lnwi;β) + vi + Ti + Ai 
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 (wnxn/wTx)i = sn(lnyi,lnwi;β) + vni + uni, n = 1,…,N-1.   (1.43) 
 
Here vi and the vni capture the effects of statistical noise. Ti ≧ 0 reflects the cost 

of technical inefficiency, Ai ≧ 0 reflects the cost of input allocative inefficiency, 

and (Ti + Ai) ≧ 0 is the cost of both. Finally, the uni ⋛ 0 capture the departures of 
actual input cost shares from their cost-efficient magnitudes. Since technical 
inefficiency is measured radially, it maintains the observed input mix and has no 
impact on input share equations. However allocative inefficiency represents an 
inappropriate input mix, and so its cost must be linked to the input cost share 
equations by means of a relationship between Ai and the uni, n = 1,…,N-1. The 
linkage must respect the fact that cost is raised by allocative errors in any input in 
either direction. The formidable problem is to estimate the technology parameters 
β and the efficiency error components (Ti, Ai and uni) for each producer. 
 
 The problem is both conceptual and statistical. The conceptual challenge 
is to establish a satisfactory linkage between allocative inefficiency (the uni) and 
its cost (Ai). The statistical challenge is to estimate a model with so many error 
components, each of which requires a distribution. The problem remained 
unresolved until Kumbhakar (1997) obtained analytical results, which Kumbhakar 
and Tsionas (2005) extended to estimate the model using Bayesian techniques. 
This is encouraging, because (1.42) remains a workhorse in the non-frontier 
literature, and more importantly because its extension (1.43) is capable of 
estimating and decomposing economic efficiency.  
 
 There is an appealing alternative. The solution is to remove the influence 
of allocative inefficiency from the error terms and parameterize it inside the cost 
frontier and its input cost shares. We turn to this approach below. 
 
 
1.5.4 Shadow price models 
 
The econometric techniques described in Sections 1.5.1 - 1.5.3 are enveloping 
techniques. Each treats technical efficiency in terms of distance to a production 
frontier, economic efficiency in terms of distance to an appropriate economic 
frontier, and allocative efficiency as a ratio of economic efficiency to technical 
efficiency. They are in rough concordance on the fundamental notions of frontiers 
and distance, in keeping with the theoretical developments in Section 1.3. They 
differ mainly in the techniques they employ to construct frontiers and to measure 
distance. However they all convert a weak inequality to an equality by introducing 
a one-sided error component. 
 
 There is a literature that seeks to measure efficiency without explicit 
recourse to frontiers, and indeed it contains many papers in which the word 
“frontier” does not appear. In this literature little attempt is made to envelop data 
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or to associate efficiency with distance to an enveloping surface. Unlike most 
econometric efficiency analysis, the focus is on allocative efficiency. Instead of 
attempting to model allocative inefficiency by means of error components, as in 
(1.43), allocative inefficiency is modeled parametrically by means of additional 
parameters to be estimated. 
 
 The literature seems to have originated with Hopper (1965), who found 
subsistence agriculture in India to attain a high degree of allocative efficiency, 
supporting the “poor but efficient” hypothesis. He reached this conclusion by 
using OLS to estimate Cobb-Douglas production functions (not frontiers), then to 
calculate the value of the marginal product of each input, and then to make two 
comparisons: the value of an input’s marginal product for different outputs, and 
the values of an input’s marginal product with its price. In each comparison 
equality implies allocative efficiency, and the sign and magnitude of an inequality 
indicates the direction and severity (and the cost, which can be calculated since 
the production function parameters have been estimated) of the allocative 
inefficiency. Hopper’s work was heavily criticized, and enormously influential. 
 
 In a nutshell, the shadow price models that have followed have simply 
parameterized Hopper’s comparisons, with inequalities being replaced with 
parameters to be estimated. Thus, assuming M=1 for simplicity and following Lau 
and Yotopoulos (1971) and Yotopoulos and Lau (1973), the inequality 
 
 y ≦ f(x;β)         (1.44) 
 
is parameterized as 
 
 y = φf(x;β).          (1.45) 
 
There is no notion of a production frontier here, since in moving from (1.44) to 
(1.45) the obvious requirement that max{φ} ≦ 1 is ignored. Indeed so far this is 
just a Hoch (1955)-Mundlak (1961) management bias production function model, 
in which different intercepts are intended to capture the effects of variation in the 
(unobserved) management input. But it gets better. 
 
 If producers seek to maximize profit, then the inequalities 
 
 ∂φf(x;β)/∂xn ⋛ (wn/p), n = 1,…,N      (1.46) 
 
are parameterized as 
 
 ∂φf(x;β)/∂xn = θn(wn/p),       (1.47) 
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where θn ⋛ 1 indicate under- or over-utilization of xn relative to the profit 
maximizing values. All that remains is to endow f(x;β) with a functional form, and 
estimation of (β,φ,θn) provides a more sophisticated framework within which to 
implement Hopper’s procedures. A host of hypotheses can be tested concerning 
the existence and nature of technical and allocative efficiency, without recourse 
to the notion of a frontier and error components. 
 
 The shadow price approach gained momentum following the popularity of 
the Averch-Johnson (1962) hypothesis. This hypothesis asserted that regulated 
utilities allowed to earn a “fair” rate of return on their invested capital would 
rationally overcapitalize, leading to higher than minimum cost and thus to 
customer rates that were higher than necessary. 
 
 The analysis proceeds roughly as above. A producer’s cost 
 
 wTx ≧ c(y,w;β)        (1.48) 
 
is parameterized as 
 
 wTx = (1/φ)c(y,θw;β),       (1.49) 
 
where θw is a vector of shadow prices. Now φ ≦ 1 reflects technical inefficiency 

and θn ⋛ 1 reflects allocative inefficiency, and there is an explicit notion of a cost 
frontier. A producer’s input demands 
 
 xn ⋛ xn(y,w;β)         (1.50) 
 
are parameterized as 
 
 xn = (1/φ)xn(y,θw;β).        (1.51) 
 
Although xn may be allocatively inefficient for the input prices w a producer 
actually pays, it is allocatively efficient for the shadow price vector θw.  

 
 The Averch-Johnson hypothesis asserts that rate of return regulation 
lowers the shadow price of capital beneath the cost of capital, leading to rational 
overcapitalization. The situation is depicted in Figure 1.13. Given exogenous 
output y and input prices wK and wL, the cost minimizing input combination 
occurs at xE. The actual input combination occurs at xA, which is technically 
efficient but allocatively inefficient, involving overcapitalization. Since the actual 
input combination must be allocatively efficient for some price ratio, the problem 
boils down to one of estimating the distortion factor θ along with the technology 
parameters β. In the two-input case illustrated in Figure 1.13, there is one 
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distortion parameter, while in the N input case there are N-1 distortion 
parameters. The hypothesis of interest is that θ < 1, the cost of which is given by 
the ratio [c(y,θw;β) / c(y,w;β)] ≧ 1, which is the reciprocal of the cost efficiency 

measure (1.22) translated to this analytical framework.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Comparing (1.49) and (1.51) with (1.43) makes it clear that in the 
shadow price approach both sources of cost inefficiency have been moved from 
error components to the functions to be estimated. Although the error 
components approach to estimation and decomposition of economic efficiency 
has proved intractable so far, the shadow price approach has proved successful 
and has become very popular. It is also possible to combine the two approaches, 
by modeling technical efficiency as an error component, and modeling allocative 
efficiency parametrically. Kumbhakar and Lovell (2000) discuss estimation 
strategies for the pure shadow price model and the combined model. 
 
 When modeling the behavior of producers who are constrained in their 
pursuit of a conventional objective, or who pursue an unconventional objective, 
analysts have two choices. The preferred choice is to model objective and 
constraint(s) correctly, derive the first order conditions, and construct an 
estimating model based on the assumption that producers are efficient. This can 
be hard work, as Färe and Logan (1983) have demonstrated for the case of the 
profit-seeking rate-of-return regulated producer. An easier alternative approach, 
illustrated above, is to model such producers as being unconstrained in their 
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pursuit of a conventional objective, allow for failure to satisfy first order 
conditions, and check to see if the direction of the estimated allocative 
inefficiency is consistent with what one would expect if in fact the producers were 
constrained or pursued some other objective. That is, use a model that is 
inappropriate but familiar, and look for allocative inefficiency by comparing 
shadow price ratios with actual price ratios. 
 
 In a related situation the analyst does not know the constraints or the 
objective of producers, perhaps because there are competing paradigms at 
hand. In this case it is feasible to use the familiar model and use estimated 
shadow prices to provide an indirect test of the competing paradigms. 
 
 These are the two purposes that the shadow price approach most 
frequently serves. Thus, allocative inefficiency in the unconstrained pursuit of 
cost minimization or profit maximization suggests allocative efficiency in a more 
complicated environment, and departures of shadow price ratios from actual 
price ratios provide the basis for hypothesis tests. The model has been used 
frequently to test the Averch-Johnson hypothesis, and more generally as a 
framework for testing allocative efficiency hypotheses in a wide variety of 
contexts. Two other examples come to mind, primarily because they are current 
and have not yet been subjected to analysis using the shadow price approach. 
The impact of domestic content legislation could be explored within the shadow 
price framework. Another popular hypothesis that could be tested within this 
framework is that of discrimination, against minorities or immigrants or whatever 
group is of interest. 
 
 
 
1.6  The Mathematical Programming Approach to Efficiency Measurement 
 
The mathematical programming approach to the construction of frontiers and the 
measurement of efficiency relative to the constructed frontiers goes by the 
descriptive title of data envelopment analysis, with interesting acronym DEA. It 
truly does envelop a data set; it makes no accommodation for noise, and so does 
not “nearly” envelop a data set the way the deterministic kernel of a stochastic 
frontier does. Moreover, subject to certain assumptions about the structure of 
production technology, it envelops the data as tightly as possible. 
 
 Like the econometric approach, the programming approach can be 
categorized according to the type of data available (cross-section or panel), and 
according to the types of variables available (quantities only, or quantities and 
prices). With quantities only, technical efficiency can be estimated, while with 
quantities and prices economic efficiency can be estimated and decomposed into 
its technical and allocative components. However DEA was developed in a public 
sector, not-for-profit environment, in which prices are suspect at best and missing 
at worst. Consequently the vast majority of DEA studies use quantity data only 
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and estimate technical efficiency only, despite the fact that the procedures are 
easily adapted to the estimation of economic efficiency in a setting in which 
prices are available and reliable. 
 
 In Section 1.6.1 we analyze plain vanilla DEA to estimate technical 
efficiency. In Section 1.6.2 we discuss one of many possible DEA models of 
economic efficiency. In Section 1.6.3 we discuss the application of DEA to panel 
data, although the most popular such application occurs in the analysis of 
productivity change, which we discuss in Section 1.8.3. In Section 1.6.4 we 
discuss a technical issue, the imposition of weight restrictions, which has 
important economic implications. Finally in Section 1.6.5 we offer a brief 
introduction to the statistical foundations of DEA, a subject covered more fully in 
Chapter 4. 
 
 
1.6.1  Basic DEA 
 
Producers use inputs x ∈ RN

+ to produce outputs y ∈ RM
+. The research objective 

is to estimate the performance of each producer relative to best observed 
practice in a sample of i = 1,…,I producers. To this end weights are attached to 
each producer’s inputs and outputs so as to solve the problem 
 

minυ,µ   υTxo / µTyo 
subject to    υTxi / µTyi ≧ 1,    i = 1,…,o,…,I 

   υ,µ ≧ 0 
(1.52) 

 
Here (xo,yo) are the vectors of inputs and outputs of the producer under 
evaluation, and (xi,yi) are the vectors of inputs and outputs of the ith producer in 
the sample. The problem seeks a set of nonnegative weights, or multipliers, that 
minimize the weighted input-to-output ratio of the producer under evaluation, 
subject to the constraints that when these weights are assigned to every 
producer in the sample, their weighted input-to-output ratios are bounded below 
by one. Associate the multipliers (υ,µ) with shadow prices, and think of the 
objective in the problem as one of minimizing the ratio of shadow cost to shadow 
revenue.  
 
 The nonlinear program (1.52) can be converted to a dual pair of linear 
programs. The first DEA model is known as the CCR model, after Charnes et al. 
(1978). The “multiplier” program appears in the right panel of (1.53), where X is 
an N×I sample input matrix with columns of producer input vectors xi and Y is an 
M×I sample output matrix with columns of producer output vectors yi. Think of the 
multiplier program as one of minimizing shadow cost, subject to the constraint 
that shadow revenue is normalized to one, and subject to the constraints that 
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when these multipliers are assigned to all producers in the sample, no producer 
earns positive shadow profit. 
 

CCR Envelopment Program CCR Multiplier Program 
max(,(    ( min(,(    (Txo 
subject to    X( ≦ xo subject to            (Tyo = 1 
                   (yo ≦ Yλ                   υTX – µTY ≧ 0 

                      λ ≧ 0                              υ,µ ≧ 0 
(1.53) 

 
 Because the multiplier program is a linear program, it has a dual, which is 
also a linear program. The dual “envelopment” program appears in the left panel 
of (1.53), where φ is a scalar and λ is an I×1 intensity vector. In the envelopment 
program the performance of a producer is evaluated in terms of its ability to 
expand its output vector subject to the constraints imposed by best practice 
observed in the sample. If radial expansion is possible for a producer, its optimal 
φ > 1, while if radial expansion is not possible, its optimal φ = 1. Noting the output 
orientation of the envelopment program, it follows that φ is the DEA estimator of 
TEo(x,y) defined in (1.12). Noting that φ is a radial efficiency measure, and 
recalling the divergence between Koopmans’ definition of technical efficiency and 
the Debreu - Farrell measure of technical efficiency, it follows that optimal φ = 1 is 
necessary, but not sufficient, for technical efficiency since (φyo,xo) may contain 
slack in any of its M+N dimensions. At optimum, φ = 1 characterizes technical 
efficiency in the sense of Debreu and Farrell, while {φ = 1, Xλ = xo, φyo = Yλ} 
characterizes technical efficiency in the sense of Koopmans. 
 
 The output-oriented CCR model is partly illustrated in Figure 1.14, for the 
M=2 case. Producer A is technically inefficient, with optimal projection φAyA 
occurring at a convex combination of efficient producers D and C on the output 
isoquant ICCR(x), and so λD > 0, λC > 0 with all other elements of the intensity 
vector being zero. The efficient role models D and C are similar to, and a linear 
combination of them is better than, inefficient producer A being evaluated. The 
envelopment program provides this information. The multiplier program provides 
information on the trade-off between the two outputs at the optimal projection. 
The trade-off is given by the optimal shadow price ratio -(µ1/µ2). The fact that this 
shadow price ratio might differ from the market price ratio, if one exists, plays a 
role in the DEA model of economic efficiency in Section 1.6.2. The multiplier 
program also provides information on input trade-offs -(υn/υk) and output-input 
trade-offs (µm/υ), although this information is not portrayed in Figure 1.14. 
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Problem (1.53) is solved I times, once for each producer in the sample, to 

generate I optimal values of (φ,λ) and I optimal values of (υ,µ). It thus provides a 
wealth of information about the performance of each producer in the sample, and 
about the structure of production technology. 
 
 The CCR production set corresponding to T in (1.1) is obtained from the 
envelopment problem in (1.53) as TCCR = {(y,x): y ≦ Yλ, Xλ ≦ x, λ ≧ 0}, and 
imposes three restrictions on the technology. These restrictions are constant 
returns to scale, strong disposability of outputs and inputs, and convexity. Each 
of these restrictions can be relaxed. 
 
 Constant returns to scale is the restriction that is most commonly relaxed. 
Variable returns to scale is modeled by adding a free variable υo to the multiplier 
program, which is equivalent to adding a convexity constraint Σiλi = 1 to the 
envelopment program. The variable returns to scale model was introduced by 
Afriat (1972), but is better known as the BCC model after Banker et al. (1984). 
The BCC envelopment and multiplier programs become 
 
 

BCC Envelopment Program BCC Multiplier Program 
maxφ,λ    φ minυ,υo,µ    υTxo + υo 
subject to    Xλ ≦ xo subject to                   µTyo = 1 

                   φyo ≦ Yλ                   υTX + υo – µTY ≧ 0 

                      λ ≧ 0, Σiλi = 1                                     υ,µ ≧ 0, υo free 
(1.54) 
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Figure 1.14 The Output-Oriented CCR Model 
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The interpretation of the BCC envelopment and multiplier programs is essentially 
the same as for the CCR model, but the BCC production set shrinks, becoming 
TBCC = {(y,x): y ≦ Yλ, Xλ ≦ x, λ ≧ 0, Σiλi = 1}. TBCC exhibits variable returns to 
scale, because only convex combinations of efficient producers form the best 
practice frontier. For this reason it envelops the data more tightly than TCCR does.  
 

The difference between the two production sets is illustrated in Figure 
1.15. Because TBCC envelops the data more tightly than TCCR does, efficiency 
estimates are generally higher with a BCC specification, and rankings can differ 
in the two specifications. As in the CCR model, the BCC envelopment program 
provides efficiency estimates and identifies efficient role models. Also as in the 
CCR model, the BCC multiplier program estimates optimal shadow price ratios, 
but it also provides information on the nature of scale economies. The optimal 
projection to TBCC occurs at (φyo,xo). At this projection the output-input trade-off is 
µ/υ. The vertical intercept of the supporting hyperplane y = υo + υxo at (φyo,xo) is 
positive. This indicates decreasing returns to scale at (φyo,xo), which should be 
apparent from Figure 1.15. More generally, υo ⋚ 0 signals that a producer is 
operating in a region of increasing, constant or decreasing returns to scale. 
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Figure 1.15 Returns to Scale in DEA 
 
 



 53 

Notice the shape of TBCC in Figure 1.15. Requiring strictly positive input to 
produce nonzero output is a consequence of not allowing for the possibility of 
inactivity, and of imposing convexity on TBCC. This creates a somewhat strained 
notion of variable returns to scale, one that is well removed from the classical S-
shaped production frontier that reflects Frisch’s (1965) “ultra-passum” law. 
Petersen (1990) has attempted to introduce more flexibility into the DEA 
approach to measuring scale economies by dispensing with the assumption of 
convexity of T, while maintaining the assumption of convexity of L(y) and P(x). 

 
The CCR and BCC models differ in their treatment of scale economies, as 

reflected by the additional equality constraint Σiλi = 1 and free variable υo in the 
BCC model. Just as (µ,υ) are shadow prices of outputs and inputs, υo is the 
shadow value of the convexity constraint Σiλi = 1. It is possible to conduct a test 
of the null hypothesis that υo = 0, or that the convexity constraint Σiλi = 1 is 
redundant. This is a test for constant returns to scale, and is discussed along 
with other hypothesis tests in Chapter 4. However a qualification is in order 
concerning the interpretation of the multipliers. Most efficient producers are 
located at vertices, and it is possible that some inefficient producers are 
projected to vertices. At vertices shadow prices of variables (υ,µ) in the CCR and 
BCC models, and of the convexity constraint (υo) in the BCC model, are not 
unique. 
 
 The CCR and BCC envelopment programs are output-oriented, just as the 
econometric problem (1.32) is. It is a simple matter to obtain analogous input-
oriented envelopment programs, by converting the envelopment programs to 
minimization programs and converting the multiplier problems to maximization 
programs. Details appear in Chapter 3. The choice between the two orientations 
depends on the objective assigned to producers. If producers are required to 
meet market demands, and if they can freely adjust input usage, then an input 
orientation is appropriate.  
 
 The assumption of strong disposability is rarely relaxed, despite the 
obvious interest in relaxing the free disposability of surplus inputs or unwanted 
outputs. One popular exception occurs in environmental economics, in which 
producers use purchased inputs to produce marketed outputs and undesirable 
byproducts like air or water pollution. In this case the byproducts may or may not 
be privately freely disposable, depending on whether the regulator is watching, 
but they are surely socially weakly or expensively disposable. The value of 
relaxing the strong output disposability assumption lies in its potential to provide 
evidence on the marginal private cost of abatement. This evidence can be 
compared with estimates of the marginal social benefit of abatement to inform 
public policy. 
 
 Without going into details, which are provided by Färe et al. (1989, 1993) 
and a host of subsequent writers, the essence of weak disposability is captured 
in Figure 1.16. Here y2 is a marketed output and y1 is an undesirable byproduct. 
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A conventional output set exhibiting strong disposability is bounded by the output 
isoquant IS(x) with solid line segments. The corresponding output set exhibiting 
weak disposability of the byproduct is bounded by the output isoquant IW(x) with 
dashed line segments. LW(x) ⊆ LS(x), and that part of LS(x) not included in LW(x) 
provides an indication of the amount of marketed output foregone if the 
byproduct is not freely disposable. Disposal is free with technology LS(x), and  
abatement is costly with technology LW(x). For y1 < y1* the conventional strong 
disposal output set allows abatement of y1 to be privately free, as indicated by 
the horizontal solid line segment along which (µ1/µ2) = 0. In contrast, the weak 
disposal output set makes abatement privately costly, as indicated by the 
positively sloped dashed line segments to the left of y1*. Moreover, increased 
abatement becomes increasingly costly, since the shadow price ratio (µ1/µ2) > 0 
increases with additional abatement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 In Figure 1.16 the marginal cost of abatement is reflected in the amount of 
y2 (and hence revenue) that must be sacrificed to reduce the byproduct. With 
given inputs and technology, reducing air pollution requires a reduction in 
electricity generation. Allowing x or technology to vary would allow the cost of 
abatement to reflect the additional input or the new technology (and hence cost) 
required to abate with no loss in marketed output. With given electricity 
generation, reducing air pollution could be accomplished by installing scrubbers 
or by upgrading technology. 

 The assumption of convexity of output sets P(x) and input sets L(y) also is 
rarely relaxed, despite the belief of many, expressed by McFadden (1978;8-9), 
that its importance lies more in its analytical convenience than in its technological 
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Figure 1.16 Weak Disposability of y1 
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realism. In the previous context of scale economies, feasibility of an activity (y,x) 
does not necessarily imply feasibility of all scaled activities (λy,λx), λ > 0, which 
motivates relaxing the assumption of constant returns to scale. In the present 
context feasibility of two distinct activities (yA,xA) and (yB,xB) does not necessarily 
imply feasibility of all convex combinations of them, which motivates relaxing the 
assumption of convexity. 

Deprins et al. (1984) were the first to relax convexity. They constructed a 
“free disposal hull” (FDH) of the data that relaxes convexity while maintaining 
strong disposability and allowing for variable returns to scale. An FDH output set 
is contrasted with a BCC output set in Figure 1.17. The BCC output set is 
bounded by the output isoquant IBCC(x) as indicated by the solid line segments. 
The FDH output set dispenses with convexity but retains strong disposability, and 
is bounded by the output isoquant IFDH(x) as indicated by the dashed line 
segments. The contrast between FDH and DEA input sets and production sets is 
structurally identical. In each case dispensing with convexity creates frontiers that 
have a staircase shape. This makes slacks a much more serious problem in FDH 
than in DEA, and it complicates the FDH multiplier program. 

 

 

 

 

 

 

 

 

 

 

 

The FDH envelopment program is identical to the BCC envelopment 
program in (1.54), apart from the addition of an integral constraint λi ∈ {0,1}, i = 
1,…,I. Since all intensity variables are assigned values of zero or one, the 
convexity constraint Σiλi = 1 implies that exactly one intensity variable has a 
value of one. Thus FDH identifies exactly one role model for an inefficient 
producer, and the role model is an actual efficient producer rather than a fictitious 
convex combination of efficient producers. In Figure 1.17 inefficient producer A 
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Figure 1.17 An FDH Output Set 
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receives an FDH radial efficiency estimate indicated by the arrow, and has 
efficient role model C rather than a convex combination of C and B as in DEA. 
The additional constraint in the FDH envelopment program causes PFDH(x) ⊆ 
PBCC(x), and so FDH efficiency estimates are generally higher than BCC 
efficiency estimates. Although the addition of an integral constraint converts 
(1.54) to a more complicated mixed integer program, it actually simplifies the 
computation of the envelopment program. In fact, programming techniques are 
not required to obtain FDH efficiency estimates. Tulkens (1993) provides details.  

 We closed Section 1.3 by bemoaning the neglect of dominance. Although 
dominance information provides a useful complement to any type of efficiency 
analysis, it is popular only in FDH efficiency analysis. The vector comparison 
tools that are used to identify the single efficient role model also serve to identify 
all dominating producers for each inefficient producer, and all dominated 
producers for each efficient producer. Identifying dominating producers enhances 
the likelihood that an inefficient producer can find a useful role model, fully 
efficient or not. Identifying the number of dominated producers also offers a 
procedure for ranking ostensibly efficient producers, a problem that has engaged 
researchers ever since Andersen and Petersen (1993) first raised the issue. The 
problem is addressed in Chapter 4. 

 At the end of Section 1.5.1 we discussed procedures for incorporating 
potential determinants of efficiency in SFA. The same challenge arises in DEA, 
and at least two approaches have been developed. One approach is to add to 
the CCR envelopment program (1.53) or the BCC envelopment program (1.54) 
the additional constraints Zλ ≦ zo or Zλ ≧ zo, or a combination of the two, 
depending on whether the potential determinants enhance or retard output. This 
of course requires appropriate modification of the dual multiplier programs. This 
approach is analogous to replacing f(xi;β) with f(xi,zi;β,γ) in SFA. Two difficulties 
arise. First, unlike SFA, in which we simultaneously estimate both the 
magnitudes and the signs of the elements of γ, here we must know in advance 
the direction of the influence of the elements of z in order to set the inequalities. 
Second, in this formulation elements of z either enhance or retard output, but 
they do not influence the efficiency with which x produces y. The other approach, 
far more popular, is to regress estimated efficiency scores against z in a second 
stage regression. We have already warned of the sins committed by doing so in 
SFA, and the story is similar, but happily not quite so bleak, in DEA. Chapter 4 
provides a detailed analysis of the use of second stage regressions in DEA. The 
message is of bad news - good news form: (i) statistical inference on the second 
stage regressions you have seen (or conducted) is invalid; although (ii) it is 
possible to formulate the model in such a way that it provides a rational basis for 
regressing efficiency estimates in a second stage analysis, and bootstrapping 
can provide valid inference.   

 



 57 

1.6.2  A DEA model of economic efficiency 

The DEA models in Section 1.6.1 use quantity data only, and so capture 
technical efficiency only. In this Section we show how to extend DEA models to 
provide measures of economic efficiency. We continue our output orientation by 
illustrating the extension with a problem of revenue maximization. 

 Producers are assumed to use inputs x ∈ RN
+ to produce outputs y ∈ RM

+ 
for sale at prices p ∈ RM

++. Their objective is to maximize revenue, subject to the 
constraints imposed by output prices, input supplies and the structure of 
production technology, which is allowed to exhibit variable returns to scale. This 
problem can be expressed in linear programming format as 

 
Revenue Maximization Program 
r(x,p) = maxy,λ   pTy 
subject to    Xλ ≦ xo 

                      y ≦ Yλ 

                      λ ≧ 0, Σiλi = 1 

           (1.55) 

The production set can be recognized as TBCC, and so (1.55) is a 
straightforward extension of conventional DEA to an economic optimization 
problem. The problem is illustrated in Figure 1.18. The revenue efficiency of 
producer A is estimated from (1.55) as RE(yA,x,p) = pTyRM/pTyA > 1. The technical 
efficiency of A is estimated from (1.54) as TEo(x,yA) = pT(φyA)/pTyA = φ > 1. The 
output allocative efficiency of A is estimated residually as AEo(yA,x,p) = 
pTyRM/pT(φyA) > 1. Notice that at the optimal projection φyA the estimated shadow 
price ratio (µ1/µ2) < (p1/p2). This provides an indication of the existence, and the 
direction, of a misallocation of outputs; the output mix (y2/y1)A is too large, given 
(p1/p2). The cost of this misallocation, in terms of lost revenue, is estimated as 
[pTyRM - pT(φyA)] > 0. 
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 Alternative objectives, and alternative or additional constraints, can be 
entertained within the same general linear programming format. All that is 
required is the requisite data and the ability to write down a linear programming 
problem analogous to (1.55) that captures the objective and the constraints of the 
economic problem of interest. Färe et al. (1985) analyze several economic 
optimization problems with linear programming techniques. 

 

1.6.3  Panel data 

Thus far in Section 6 we have assumed that we have a single cross-section of 
data with which to evaluate producer performance. Suppose now that we have a 
panel consisting of T time periods and I producers in each period. How does 
DEA exploit the ability to observe each producer multiple times? The available 
techniques are not as sophisticated as panel data econometric techniques, but 
several options are available. 

 One option is to pool the data and estimate a single grand frontier. In 
doing so this option assumes an unvarying best practice technology, which may 
be untenable in long panels. It does, however, generate T efficiency estimates for 
each producer, all against the same standard, and trends in efficiency estimates 
of individual producers may be of interest. 

 At the other extreme, it is possible to estimate T separate frontiers, one for 
each period. This allows for technical progress and regress. It also allows for 
intersecting frontiers, which would signal local progress in a region of output-

           y2 
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     •            
 
                      y1 
    

Figure 1.18 Revenue Maximization in DEA 
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input space and local regress in another region. A danger of this approach is the 
possibility of excessive volatility in efficiency scores resulting from excessive 
variation in temporally independent period frontiers. 

 An intermediate option is to estimate a sequence of overlapping pooled 
panels, each consisting of a few time periods of arbitrary length. Known as 
“window analysis,” this option tracks efficiency trends through successive 
overlapping windows. One purpose of window analysis is to relieve degrees of 
freedom pressure when M+N is large relative to I. As such it provides a 
compromise between running DEA once on one large I×T pooled panel and 
running DEA T times on T small cross sections. Another objective of window 
analysis is to alleviate volatility in efficiency estimates. 

 A second intermediate option is to estimate a sequential frontier by 
continuously adding data from successive time periods. In the end, this 
procedure constructs a grand frontier, but prior to the terminal period frontiers are 
estimated sequentially from current and all previous (but not subsequent) data. 
This option rules out the possibility of technical regress, presumably in the belief 
that techniques once known are not forgotten, and remain available for adoption. 
A drawback of this option is that sample sizes increase sequentially, which 
complicates statistical inference. 

 A final option is to use two adjacent periods of data at a time, beginning 
with periods 1 and 2, continuing with periods 2 and 3, and so on. This option may 
look like two-period window analysis, but it is very different. It is used to estimate 
and decompose Malmquist indexes of productivity change, and we defer 
discussion of this option to Section 1.7. 

 

1.6.4  Weight restrictions 

The multipliers (υ,µ) in the CCR problem (1.53) and the BCC problem (1.54) are 
not market prices. Indeed a frequently touted virtue of DEA is that it is practical in 
situations in which market prices are missing, as in the environmental context 
illustrating weak disposability in Section 1.6.1. The multipliers are in fact 
endogenously determined shadow prices revealed by individual producers in 
their effort to maximize their relative efficiency. The great Russian mathematician 
(and, together with Koopmans, the 1975 recipient of the Nobel Prize in Economic 
Sciences) Kantorovich referred to them as “resolving multipliers,” ostensibly 
because they solve the dual linear programs. As Figure 1.14 illustrates, different 
producers can choose different sets of shadow price ratios, and the freedom to 
choose is limited only by the nonnegativity constraints υ,µ ≧ 0. Consequently the 
range of multipliers chosen by producers might differ markedly from market 
prices (when they exist), or might offend expert judgement on the relative values 
of the variables (when market prices are missing). This opens up the possibility 
of limiting the freedom to choose. 
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At the other extreme, many comparisons are based on fixed weights that 
give no freedom to choose. A recent example is provided by the World Health 
Organization (2000), which somewhat controversially evaluated the ability of 191 
member countries to provide health care to their citizens. WHO used five health 
care indicators ym, to which they assigned fixed weights µm > 0, Σmµm = 1. These 
fixed weights were based on expert opinion, but they were common to all 
countries, regardless of their development status. To require Mali and Canada, 
for example, to assign equal importance to each indicator seems undesirably 
restrictive. Why not retain the five indicators, but give countries the freedom to 
choose their own weights, subject to the requirements that µm ≧ 0, Σmµm = 1? 

 This is exactly what DEA does. Lauer et al. (2004) ran the output-oriented 
DEA program 

    
maxφ,λ    φ minµ,ω       ω 
subject to     subject to          µTyo = 1 
                   φyo ≦ Yλ                  – µTY + ω ≧ 0 

                      λ ≧ 0, Σiλi = 1                                µ ≧ 0, Σmµm = 1, ω free 

(1.56) 

which is the BCC model (1.54) with scalar input with unit value for each country 
(each country is “itself”). Each country is allowed to select its own nonnegative 
health care indicator weights. 

 The results were unacceptable. Over one-third of the countries assigned a 
zero weight to four of five indicators, and nearly 90% of the countries assigned a 
zero weight to y1 = population health, the defining goal of any health system. 
Only three countries assigned positive weights to all five indicators. The fixed 
positive weights common to all countries used by WHO are unappealing, but so 
is the excessive variability of self-assigned nonnegative weights allowed by DEA. 
A frequently touted virtue of DEA, that it is value-free in its selection of weights, 
can turn out to be a vice. 

This is not an isolated incident. Imposing only the restrictions that output 
and input weights be nonnegative can, and frequently does, generate silly 
weights and implausible weight variability, both of which offend common sense. 
Fortunately a remedy exists. It is possible to allow weight flexibility, and at the 
same time to restrict weight flexibility. This was the fundamental insight of 
Thompson et al. (1986). They were forced to figure out how to impose weight 
restrictions in their DEA study of identifying an optimal site to place a high-energy 
physics facility. Their motivation was that sites have characteristics, and in the 
opinion of experts no characteristic could be ignored by assigning it zero weight. 
Necessity is the mother of invention. 
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The DEA literature on imposing weight restrictions has come a long way 
since 1986, and there exist many ways of restricting weights. One appealing 
procedure is to append to the multiplier program of (1.56) the restrictions 

γm ≥ µmym/µTy ≥ βm,    m = 1,…,5,      (1.57) 
 
which place lower and upper bounds on the relative importance of each indicator 
in the evaluation of health care performance. Although these bounds are 
common to all countries, they do allow limited freedom to choose. 
 
 More generally it is possible to impose restrictions on output weights, on 
input weights, and on the ratio of output weights to input weights, in the BCC 
model (1.54). The appeal of the procedure is that it offers a compromise between 
the arbitrary imposition of common weights and the excessively flexible DEA 
weights. Of course we still need experts to set the bounds, and experts 
frequently disagree. A fascinating example, related by Takamura and Tone 
(2003), is occurring in Japan, whose government plans to move several agencies 
out of congested Tokyo. Ten candidate sites have been identified, and 18 criteria 
have been specified. Criteria vary in their importance, and a committee of wise 
men has been named to establish bounds of the form (1.57) on each criterion, 
and these bounds must reflect differences of opinion among the wise men. DEA 
with weight restrictions is being used to solve a 12 trillion yen problem! 

 
Of course the problem of unreasonable shadow prices is not limited to 

DEA; it can arise in SFA as well. The problem has received far more attention in 
DEA, where it is arguably easier to resolve. For more on weight restrictions in 
DEA, see Chapter 3. 
  

1.6.5 Statistical foundations of DEA 
 
A distinguishing feature of the DEA models discussed above is that they 

do not contain a random error term that would incorporate the impacts of 
statistical noise; the DEA frontier is not stochastic as it is in SFA. This has led to 
two separate strands of research.  

 
Land et al. (1993) and Olesen and Petersen (1995) sought to make DEA 

stochastic by introducing a chance that the constraints (on either the 
envelopment problem or the multiplier problem) in either (1.53) or (1.54) might be 
violated with some probability. This approach is an extension to DEA of chance-
constrained programming developed by Charnes et al. (1958) and Charnes and 
Cooper (1959), and is known as “chance-constrained DEA.”  
 

We follow Land et al. (1993) by writing the CCR envelopment problem in 
(1.53) as 
 
 



 62 

Chance-Constrained CCR Envelopment Program 
maxφλ    φ 
subject to      Pr[Xλ ≦ xo] ≧ 0.95 

                   Pr[(yo ≦ Yλ] ≧ 0.95 

                                    λ ≧ 0 
          (1.58) 
 

where the pre-specified probabilities of satisfying each constraint are assumed 
equal at the popular 95% level to simplify the exposition. Program (1.58) asks 
producers to radially expand their output vector as far as possible, subject to the 
constraint that (φyo,xo) “probably” is feasible.  
  

Program (1.58) is not operational. It can be made operational by making 
assumptions on the distributions of the sample data. If it is assumed that each 
output yim is a normally distributed random variable with expected value Eyim and 
variance-covariance matrix Vyimyjm, and that each input is a normally distributed 
random variable with expected value Exin and variance-covariance matrix Vxinxjn, 
then (1.58) can be expressed in modified certainty-equivalent form as 

 
 

Chance-Constrained CCR Envelopment Program: Certainty Equivalent Form 
maxφ,λ    φ 
subject to  Σixinλi + Σi(Exin – xin)λi + 1.645[ΣiΣjλiλjVxinxjn]1/2 ≦ xon, n=1,…,N 

                  φyom ≦ Σiyimλi + Σi(Eyim – yim)λi – 1.645[ΣiΣjλiλjVyimyjm]1/2, m=1,…,M 

                  λI ≧ 0, i=1,…,I 
          (1.59) 

 
where 1.645 = F-1(0.95) is the pre-specified value of the distribution function of a 
standard normal variate.  If xin - Exin = yim - Eyim = Vxinxjn = Vyimyjm = 0 for all 
producers i and j and for all variables m and n, the nonlinear program (1.59) 
collapses to the linear program (1.53). However if we have reason to believe that 
a sample data point departs from its expected value, perhaps due to unusually 
good weather or unexpected supply disruption, then this information is fed into 
the chance-constrained program. The desired outcome is that, unlike program 
(1.53), good or bad fortune does not distort efficiency measures for any producer. 
Similarly, if we have reason to believe that any pair of inputs or outputs is 
correlated across producers, perhaps because farmers in the same region 
experience similar weather patterns, this information is also fed into the program.  
 
 The data requirements of chance-constrained efficiency measurement are 
severe. In addition to the data matrices X and Y, we require information on 
expected values of all variables for all producers, and variance-covariance 
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matrices for each variable across all producers. The idea is neat, and 
developments continue, but serious applications are few and far between. 
 
 There is another way of dealing with the absence of an explicit random 
error term in DEA. This is to acknowledge at the outset that DEA efficiency 
scores are estimators of true, but unknown, efficiencies. The properties of these 
estimators depend on the structure of the true, but unknown, technology, and 
also on the process by which the sample data have been generated, the DGP. 
 

We know the DEA assumptions on the structure of the true technology. In 
a series of papers, Simar and Wilson and their colleagues have introduced 
assumptions on the DGP. This enables them to interpret the DEA efficiency 
measure as an estimator with statistical properties, thus endowing DEA with 
statistical foundations. In addition to convexity and strong disposability of the 
true, but unknown, technology, they make the following assumptions on the 
DGP: 

• the sample data (xi,yi), i=1,…,I, are realizations of iid random variables 
with probability density function f(x,y); 

• the probability of observing an efficient unit [φ(x,y) = 1] approaches unity 
as the sample size increases;  

• for all (x,y) in the interior of T, φ(x,y) is differentiable in (x,y). 
 
Armed with these assumptions on the DGP, it is possible to prove that 
 • the DEA efficiency estimator φDEA(x,y) is biased toward unity; 

• but φDEA(x,y) is a consistent estimator; 
• although convergence is slow, reflecting the curse of dimensionality. 
 
A closed form for the density of φDEA(x,y) has yet to be derived. 

Consequently bootstrapping techniques must be used to approximate it in order 
to conduct statistical inference. A sobering message emerges from the 
bootstrapping exercises we have seen. DEA efficiency estimates are frequently 
used to compare the performance of one producer, or one group of producers, to 
another. However bootstrapping tends to generate confidence intervals that are 
sufficiently wide to question the reliability of inferences drawn from such 
comparisons. This message mirrors that of the relatively wide confidence 
intervals surrounding SFA efficiency estimates. 
 
 In Chapter 4 Simar and Wilson provide the analytical details, they explain 
why and how to bootstrap, and they discuss hypothesis testing.   

 
 
 
1.7 Malmquist Productivity Indexes 
 
Throughout this Chapter, and particularly in Section 1.3, we have associated 
distance functions with efficiency measures. We now show how distance 
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functions also constitute the building blocks for a measure of productivity change. 
The story begins with Malmquist (1953), who introduced the input distance 
function in the context of consumption analysis. His objective was to compare 
alternative consumption bundles. He did so by developing a standard of living (or 
consumption quantity) index as the ratio of a pair of input distance functions. In 
the context of production analysis, Malmquist's standard of living index becomes 
an input quantity index. An analogous output quantity index is expressed as the 
ratio of a pair of output distance functions. 
 
 An obvious extension is to define a productivity index based on distance 
functions. Two such indexes have been developed, both bearing Malmquist’s 
name even though he proposed neither one. One index is is defined as the ratio 
of an output quantity index to an input quantity index. The output quantity index is 
a ratio of output distance functions, and the input quantity index is a ratio of input 
distance functions. It provides a rigorous extension to multiple outputs and 
multiple inputs of the fundamental notion of productivity as the ratio of output to 
input discussed in Section 1.2. Caves et al. (1982b) mentioned and dismissed 
this index, which subsequently was introduced by Bjurek (1996). The other index 
uses only output distance functions or only input distance functions. In its output-
oriented form it defines a productivity index as the ratio of a pair of output 
distance functions, and in its input-oriented form it defines a productivity index as 
the ratio of a pair of input distance functions. Caves et al. introduced this version 
of the Malmquist productivity index, and it is the subject of this Section because it 
is more popular than the Bjurek version. 
 
 Intuition is provided by Figure 1.19, in which a producer’s input and output 
are depicted in two adjacent periods. It is obvious that productivity has increased, 
since (yt+1/xt+1) > (yt/xt) or, equivalently, (yt+1/yt) > (xt+1/xt). The challenge is to 
quantify productivity growth. A Malmquist productivity index does so by 
introducing the period t technology Tc

t as a benchmark, and by comparing the 
distances of (yt+1,xt+1) and (yt,xt) to Tc

t. Distance can be measured vertically, with 
an output expanding orientation, or horizontally, with an input conserving 
orientation, depending on the orientation of producers. The ratio of these two 
distances provides a quantitative measure of productivity change, which in Figure 
1.19 is greater than unity with either orientation.  
 
 
 
 
 
 
 
 
 
 
 



 65 

 
 
  y 

 
 
 
 
 
 
 
 
 
 
 
                  x 
 

Figure 4.1 The Malmquist Productivity Index 
 
 
 
 

This raises the question of how to specify the period t technology. Caves 
et al. defined their index on a technology that allowed for varying returns to scale. 
However Grifell-Tatjé and Lovell (1995) showed, by way of a simple numerical 
example, that this convention creates an index that ignores the contribution of 
scale economies to productivity growth. Färe and Grosskopf (1996) proved that if 
M=N=1, the Caves et al. index provides an accurate measure of productivity 
change in the sense that it equals (yt+1/yt)/(xt+1/xt) if, and only if, the index is 
defined on a technology exhibiting constant returns to scale. In light of these 
results we follow what is now common practice by defining the Caves et al. index 
on a benchmark technology satisfying constant returns to scale, which is to be 
distinguished from a best practice technology allowing for variable returns to 
scale. This convention enables the Malmquist productivity index to incorporate 
the influence of scale economies on productivity change, as a departure of the 
best practice technology from the benchmark technology. In the general M>1, 
N>1 case the influence of scale economies can be broadened to include the 
influence of changes in the output mix and changes in the input mix. 
 
 
1.7.1 Definitions and properties 
 
As in Section 1.3, let inputs x ∈ RN

+ be used to produce outputs y ∈ RM
+. The 

benchmark technology Tc = {(y,x): x can produce y} is the set of all 
technologically feasible output-input combinations, and is assumed to satisfy 
global constant returns to scale. The output set Pc(x) = {y: (x,y) ∈ Tc} is the set of 
all technologically feasible output vectors given inputs x, with outer boundary 

    y 

x 

• (xt+1,yt+1) Tc
t 

• (xt,yt) 

Figure 1.19 The Malmquist Productivity Index I 



 66 

given by the output isoquant Ic(x) = {y ∈ Pc(x), λy ∉ Pc(x) ∀ λ > 1}. The output 
distance function is defined on Pc(x) as Doc(x,y) = min{λ: (y/λ) ∈ Pc(x)}.  
 

Using the period t benchmark technology, the period t output-oriented 
Malmquist productivity index is written as 

 

Moc
t(xt,yt,xt+1,yt+1) = ( )

( )ttt
oc

1t1tt
oc

y,xD
y,xD ++

.      (1.60) 

 
Moc

t(xt,yt,xt+1,yt+1) compares (xt+1,yt+1) to (xt,yt) by comparing their distances to the 
benchmark technology Tc

t. Although Doc
t(xt,yt) ≦ 1 because (xt,yt) must be 

feasible for Tc
t, Doc

t(xt+1,yt+1) ⋛ 1 because (xt+1,yt+1) may or may not be feasible for 

Tc
t. Hence Moc

t(xt,yt,xt+1,yt+1) ⋛ 1 according as productivity growth, stagnation or 
decline has occurred between periods t and t+1, from the forward-looking 
perspective of period t benchmark technology. 
 

Using the period t+1 benchmark technology, the period t+1 output-
oriented Malmquist productivity index is written as 

 

Moc
t+1(xt,yt,xt+1,yt+1) = ( )

( )tt1t
oc

1t1t1t
oc

y,xD
y,xD

+

+++

.     (1.61) 

 
Moc

t+1(xt,yt,xt+1,yt+1) compares (xt+1,yt+1) to (xt,yt) by comparing their distances to 
the benchmark technology Tc

t+1. Although Doc
t+1(xt+1,yt+1) ≦ 1 because (xt+1,yt+1) 

must be feasible for Tc
t+1, Doc

t+1(xt,yt) ⋛ 1 because (xt,yt) may or may not be 

feasible for Tc
t+1. Hence Moc

t+1(xt,yt,xt+1,yt+1) ⋛ 1 according as productivity growth, 
stagnation or decline has occurred between periods t and t+1, from the 
backward-looking perspective of period t+1 benchmark technology. 
 

Both indexes compare (xt+1,yt+1) to (xt,yt), but they use benchmark 
technologies from different periods. The choice of benchmark technology is 
arbitrary, and the two indexes are not necessarily equal except under restrictive 
neutrality conditions on technical change. Indeed one index may signal 
productivity growth and the other productivity decline. Consequently it is 
conventional to define the Malmquist productivity index as the geometric mean of 
the two, and to write it as 
 
 Moc(xt,yt,xt+1,yt+1) = {[Moc

t(xt,yt,xt+1,yt+1) × Moc
t+1(xt,yt,xt+1,yt+1)]}1/2 
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.  (1.62) 

 
Moc(xt,yt,xt+1,yt+1) ⋛ 1 according as productivity growth, stagnation or decline has 
occurred between periods t and t+1. 
 

The two Malmquist productivity indexes are illustrated in Figure 1.20, with 
M=N=1. Moc

t(xt,yt,xt+1,yt+1) > 1 (indicated by the solid arrows) because output has 
increased faster than input relative to the period t benchmark technology. This 
shows up in (1.60) as Doc

t(xt,yt) < 1 and Doc
t(xt+1,yt+1) > 1. Moc

t+1(xt,yt,xt+1,yt+1) > 1 
(indicated by the dotted arrows) because output has increased faster than input 
relative to the period t+1 benchmark technology. This shows up in (1.61) as 
Doc

t+1(xt,yt) < Doc
t+1(xt+1,yt+1) < 1. Consequently Moc(xt,yt,xt+1,yt+1) > 1. 

 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
                  x 
 

Figure 4.1 The Malmquist Productivity Index 
 
 
 
 
 Because it is based on output distance functions, which satisfy a number 
of desirable properties, Moc(xt,yt,xt+1,yt+1) also satisfies a number of properties. 
The Malmquist productivity index satisfies most of the following desirable 
properties, with failure indicated by an inequality: 
 
M1: Weak Monotonicity 
 y” ≥ y’ ⇒ Moc(xt,yt,xt+1,y”) ≧ Moc(xt,yt,xt+1,y’) 

 y” ≥ y’ ⇒ Moc(xt,y”,xt+1,yt+1) ≦ Moc(xt,y’,xt+1,yt+1) 

    y 
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• (xt+1,yt+1) Tc
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Tc
t+1 

• (xt,yt) 

Figure 1.20 The Malmquist Productivity Index II 
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 x” ≥ x’ ⇒ Moc(xt,yt,x”,yt+1) ≦ Moc(xt,yt,x’,yt+1) 

 x” ≥ x’ ⇒ Moc(x”,yt,xt+1,yt+1) ≧ Moc(x’,yt,xt+1,yt+1) 
 
M2: Homogeneity 
 Moc(xt,yt,xt+1,λyt+1) = λMoc(xt,yt,xt+1,yt+1), λ>0 
 Moc(xt,λyt,xt+1,yt+1) = λ-1Moc(xt,yt,xt+1,yt+1), λ>0 
 Moc(xt,λyt,xt+1,λyt+1) = Moc(xt,yt,xt+1,yt+1), λ>0 
 Moc(xt,yt,λxt+1,yt+1) = λ-1Moc(xt,yt,xt+1,yt+1), λ>0 
 Moc(λxt,yt,xt+1,yt+1) = λMoc(xt,yt,xt+1,yt+1), λ>0 
 Moc(λxt,yt,λxt+1,yt+1) = Moc(xt,yt,xt+1,yt+1), λ>0 
 
M3: Proportionality 
 Moc(xt,yt,xt+1,µyt) ≠ µ, µ>0 

Moc(xt,yt,λxt,yt+1) ≠ λ-1, λ>0 
 Moc(xt,yt,λxt,µyt) = µ/λ, µ,λ>0 
 
M4: Identity 
 Moc(x,y,x,y) = 1 
 
M5: Commensurability (independence of units of measurement) 

Moc(µ1x1
t,...,µNxN

t,λ1y1
t,...,λMyM

t,µ1x1
t+1,...,µNxN

t+1,λ1y1
t+1,...,λMyM

t+1) = 
Moc(xt,yt,xt+1,yt+1),  

                  λm > 0, m=1,...,M, µn > 0, n=1,...,N 
 
M6: Circularity  
 Moc(xt,yt,xt+1,yt+1)•Moc(xt+1,yt+1,xt+2,yt+2) ≠ Moc(xt,yt,xt+2,yt+2)  
 
M7: Time Reversal 
 Moc(xt,yt,xt+1,yt+1) = [Moc(xt+1,yt+1,xt,yt)]-1 

  
 Although the Malmquist productivity index does not satisfy the 
proportionality test in either outputs or inputs separately, it does satisfy the 
proportionality test in outputs and inputs simultaneously. In addition, it is not 
circular except under restrictive neutrality conditions on technical change. The 
seriousness of the failure to satisfy the circularity test depends on the 
persuasiveness of the arguments of Fisher (1922), who rejected the test, and of 
Frisch (1936), who endorsed it. We leave this evaluation to the reader, who may 
seek guidance from Samuelson & Swamy (1974). 
 
 In Section 1.3 we noted that distance to a production frontier can be 
measured hyperbolically or directionally. The two distance functions DH(y,x) and 
DD(y,x) can be used to derive hyperbolic and directional Malmquist productivity 
indexes analogous to the output-oriented Malmquist productivity index discussed 
in this Section. A Malmquist productivity index based on directional distance 
functions is used extensively in Chapter 5. 
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1.7.2 Decomposing the Malmquist productivity index 
 
In Section 1.2 we noted that the BLS and the OECD attribute productivity change 
to technical change, efficiency change, scale economies and changes in the 
operating environment in which production occurs. It is possible to decompose 
the Malmquist productivity index (1.62) into the first three of these sources. Thus 
this index is capable not just of quantifying productivity change, but also of 
quantifying its three principal sources. 
 
 Färe et al. (1992) obtained an initial decomposition of (1.62). The 
mathematics is straightforward, and the economics is enlightening. Extracting the 
term [Doc

t+1(xt+1,yt+1)/Doc
t(xt,yt)] from the right side of (1.62) yields 

  

Moc(xt,yt,xt+1,yt+1) = ( )
( )ttt

oc

1t1t1t
oc

y,xD
y,xD +++
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tt1t
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ttt
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               = TE∆oc(xt,yt,xt+1,yt+1) × T∆oc(xt,yt,xt+1,yt+1).  (1.63) 
 
Recalling from Section 1.3 that TEo(x,y) = [Do(x,y)]-1, the first term on the right 
side of (1.63) measures the contribution of technical efficiency change to 
productivity change. TE∆oc(xt,yt,xt+1,yt+1) ⋛ 1 according as technical efficiency 
improves, remains unchanged or deteriorates between periods t and t+1. The 
second term on the right side of (1.63) measures the contribution of technical 
change to productivity change. It is the geometric mean of two terms, one 
comparing period t technology to period t+1 technology from the perspective of 
period t data, and the other comparing the two technologies from the perspective 
of period t+1 data. T∆oc(xt,yt,xt+1,yt+1) ⋛ 1 according as technical progress, 
stagnation, or regress has occurred between periods t and t+1. In Figure 1.20 it 
is apparent that productivity growth has occurred between periods t and t+1 
because technical efficiency has improved, and because technical progress has 
occurred. 
 
 There is, however, a problem with decomposition (1.63), which is why we 
refer to it as an initial decomposition. Productivity change is properly measured 
relative to the benchmark technologies Tc

t and Tc
t+1. Unfortunately so are its 

technical efficiency change and technical change components. They should be 
measured relative to the best practice technologies Tt and Tt+1 that are not 
constrained to satisfy global constant returns to scale. In addition, (1.63) 
attributes productivity change exclusively to technical efficiency change and 
technical change. Introducing a term capturing the contribution of scale 
economies requires introducing the best practice technologies. 
 



 70 

 Figure 1.21 illustrates a subsequent decomposition. The middle row 
corresponds to the initial decomposition in (1.63). The bottom row describes a 
generic decomposition of productivity change into a technical efficiency change 
component TE∆o(xt,yt,xt+1,yt+1) measured relative to the best practice 
technologies, a technical change component T∆o(xt,yt,xt+1,yt+1) characterizing the 
shift in the best practice technologies, and a third component S∆o(xt,yt,xt+1,yt+1) 
measuring the contribution of scale economies to productivity change. However 
there is more than one way to implement this subsequent decomposition 
mathematically, and different mathematical decompositions have different 
economic interpretations. All appear to agree that a subsequent decomposition is 
needed, but disagreement over the nature of the subsequent decomposition 
persists. Grosskopf (2003) and Lovell (2003) survey the landscape, and the 
decomposition issue is revisited in Chapter 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
1.7.3 Evaluating Malmquist 
 
The Malmquist productivity index has several nice theoretical features. Because 
it is based on distance functions, it inherits several desirable properties from 
them. Again because it is based on distance functions, it readily accommodates 
multiple outputs as well as multiple inputs. The output expanding orientation can 
be reversed to generate an input oriented Malmquist productivity index based on 
input distance functions, and nothing of substance would change. 
 
 The Malmquist productivity index also has a very nice practical feature. 
Once again because it is based on distance functions, it requires information on 

 
Moc(xt,yt,xt+1,yt+1) 

TE∆oc(xt,yt,xt+1,yt+1) T∆oc(xt,yt,xt+1,yt+1) 

TE∆o(xt,yt,xt+1,yt+1) S∆o(xt,yt,xt+1,yt+1) T∆o(xt,yt,xt+1,yt+1) 

Figure 1.21 Decomposing the Malmquist Productivity Index 
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quantities, but not prices. This makes it suitable for productivity measurement in 
situations in which prices are distorted or missing. We mentioned several such 
situations in Section 1.2, and we revisit the issue in Section 1.8.   
 
 The Malmquist productivity index can be decomposed into economically 
meaningful sources of productivity change, as Figure 1.21 suggests. However its 
decomposition requires a number of producers sufficiently large to enable one to 
construct benchmark and best practice technologies for each period. 
Construction can be based on either SFA techniques introduced in Section 1.5 or 
DEA techniques introduced in Section 1.6, as we indicate in Section 1.8. 
Particularly in the widely used DEA approach, however, the statistical 
significance of the contributions of the “economically meaningful” components is 
rarely investigated. 
 
 One potential source of productivity change is the vector z of exogenous 
variables previously discussed in the context of SFA and DEA. The pros and 
cons of alternative approaches to incorporating z in SFA and DEA efficiency 
analysis apply with equal force to the use of SFA and DEA to implement a 
Malmquist productivity analysis, a topic to which we now turn. 
 
 
 
1.8 Approximating Malmquist 
 
The Malmquist productivity index is a theoretical index, expressed in terms of 
distance functions defined on the true, but unknown, technology. If the index is to 
be implemented empirically, it must be approximated. Two philosophically 
different approaches have emerged. The older approach, which is far more 
popular, uses price information in place of technology information to compute 
productivity index numbers that provide empirical approximations to the 
theoretical Malmquist productivity index. This is the approach adopted by 
government statistical agencies around the world. The newer approach eschews 
price information, and uses either econometric or mathematical programming 
techniques to estimate the theoretical Malmquist productivity index itself, by 
estimating its component distance functions that characterize the structure of the 
underlying technology. Balk (1998), Diewert (1981, 1987) and Diewert and 
Nakamura (2003, 2006) survey the literature. 
 
 
1.8.1 Superlative index numbers: Fisher and Törnqvist 
 
Suppose that producers use inputs x ∈ RN

+ available at prices w ∈ RN
++ to 

produce outputs y ∈ RM
+ for sale at prices p ∈ RM

++. 
 
 Laspeyres output quantity and input quantity indexes use base period 
prices to weight quantity changes, and so 
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 YL = ptTyt+1 / ptTyt,  XL = wtTxt+1 / wtTxt.    (1.64) 
 
Paasche output quantity and input quantity indexes use comparison period prices 
to weight quantity changes, and so 
 
 YP = pt+1Tyt+1 / pt+1Tyt, XP = wt+1Txt+1 / wt+1Txt.   (1.65) 
 
Fisher (1922) output quantity and input quantity indexes are geometric means of 
Laspeyres and Paasche indexes, and so 
 
 YF = (YL × YP)1/2 = [(ptTyt+1 / ptTyt) × (pt+1Tyt+1 / pt+1Tyt)]1/2   
  
 

XF = (XL × XP)1/2 =  [(wtTxt+1 / wtTxt) × (wt+1Txt+1 / wt+1Txt)]1/2.  (1.66) 
 
Fisher quantity indexes use both base period and comparison period prices to 
weight quantity changes. A Fisher productivity index is defined as  
 

 ΠF = 
F

F

X
Y = 2/1tT1t1tT1tttT1ttT

2/1tT1t1tT1tttT1ttT

)]xw/xw()xw/xw[(
)]yp/yp()yp/yp[(

++++

++++

×
× .   (1.67) 

 
ΠF makes no use of the true but unobserved technology, and does not estimate 
it. It is computed from observable information on prices and quantities in base 
and comparison periods. What sort of approximation to the truth does it provide? 
  

Diewert (1992) proved that, under certain conditions, ΠF = 
Moc(xt,yt,xt+1,yt+1), so that there is no approximation error at all. However these 
conditions are restrictive, collectively if not individually, and require that 

• the output distance functions must be defined on the benchmark  
technologies exhibiting constant returns to scale 

• the output distance functions must have a flexible functional form that is not 
reproduced here 

• the period t and period t+1 output distance functions must have certain 
coefficients identical, which limits the extent to which technology can differ 
from one period to the next 

• production in both periods must be allocatively efficient in competitive 
output markets and competitive input markets. 
 
The first three requirements are not terribly restrictive, but the final 

requirement is, since it precludes precisely what this book is concerned with, a 
failure to optimize. Unfortunately we do not know the extent to which the 
performance of ΠF deteriorates as allocative inefficiency increases. 
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 Törnqvist (1936) output and input quantity indexes are given (in 
logarithmic form) by 
 
        lnYT = (1/2)Σm[(pm

tym
t/Σmpm

tym
t) + (pm

t+1ym
t+1/Σmpm

t+1ym
t+1)]ln(ym

t+1/ym
t)  

 
        lnXT = (1/2)Σn[(wn

txn
t/Σnwn

txn
t) + (wn

t+1xn
t+1/Σnwn

t+1xn
t+1)]ln(xn

t+1/xn
t).  (1.68)  

 
The output quantity index uses the arithmetic mean of adjacent period revenue 
shares to weight output quantity changes, and the input quantity index uses the 
arithmetic mean of adjacent period cost shares to weight input quantity changes. 
A Törnqvist productivity index is defined as  
 

ΠT = 
T

T

X
Y  = exp{lnYT - lnXT} 

 
 = exp{(1/2)Σm[(pm

tym
t/Σmpm

tym
t) + (pm

t+1ym
t+1/Σmpm

t+1ym
t+1)]ln(ym

t+1/ym
t) 

 
       - (1/2)Σn[(wn

txn
t/Σnwn

txn
t) + (wn

t+1xn
t+1/Σnwn

t+1xn
t+1)]ln(xn

t+1/xn
t)}. (1.69)   

 
Like the Fisher productivity index, the Törnqvist productivity index makes no use 
of the true but unobserved technology, and does not estimate it. It is computed 
from observable information on shares and quantities in base and comparison 
periods. What sort of approximation to the truth does it provide? 
 

Caves et al. (1982b) proved that, under certain conditions, ΠT = 
Moc(xt,yt,xt+1,yt+1), so that there is no approximation error at all. However these 
conditions are restrictive, collectively if not individually, and require that 

• all output quantities and all input quantities must be strictly positive 
• the output distance functions must be defined on the benchmark 

technologies exhibiting constant returns to scale 
• the output distance functions must have flexible translog functional form  
• the period t and period t+1 output distance functions must have identical 

second order coefficients, which limits the extent to which technology 
can differ from one period to the next 

• production in both periods must be allocatively efficient in competitive 
output markets and competitive input markets. 

 
Our evaluation of the Törnqvist productivity index parallels our evaluation 

of the Fisher productivity index. The first four requirements are not terribly 
restrictive, although the first does rule out corner solutions. However the final 
requirement is restrictive, since it precludes a failure to optimize. Unfortunately 
we do not know the extent to which the performance of ΠT deteriorates as 
allocative inefficiency increases. 
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In the economic approach to index numbers Fisher and Törnqvist 
productivity indexes are called superlative because, under the conditions stated 
above, each provides a close approximation to the truth as given by the 
theoretical Malmquist productivity index. If production technology is characterized 
by a flexible functional form (either Diewert or translog output distance functions), 
and if producers are allocatively efficient in competitive markets, then subject to 
some provisos ΠF = Moc(xt,yt,xt+1,yt+1) = ΠT. However we do not yet have a good 
sense of the performance of either ΠF or ΠT in the presence of scale economies, 
market power or allocative inefficiency. In addition, like the Malmquist productivity 
index itself, ΠF and ΠT are bilateral indexes that fail the circularity test. Both can 
be converted to circular multilateral indexes, but at a cost; the weights applied to 
quantity changes depend on the data of all producers, not just on the data of the 
producer whose productivity change is being measured. Caves et al. (1982a) 
provide the details for ΠT and references for ΠF. 

 
 
1.8.2 An econometric approach 
 
The econometric tools summarized in Section 1.5 can be adapted to the 
estimation and decomposition of a Malmquist productivity index. We summarize 
an approach suggested by Orea (2002). This approach extends previous 
analyses of Denny et al. (1981) and Nishimizu and Page (1982), and exploits the 
Caves et al. (1982b) analysis of the relationship between a Malmquist 
productivity index and a translog specification of the underlying distance 
functions. Suppose the output distance functions in the Malmquist productivity 
index have translog functional form in (x,y,t), so that 
 
 
 lnDo(x,y,t) = αo + Σnαnlnxn + Σmβmlnym + (½)ΣnΣkαnklnxnlnxk  
 

+ (½)ΣmΣqβmqlnymlnyq + ΣnΣmγnmlnxnlnym + δtt  + (½)δttt2  
 
+ Σnδtntlnxn + Σmδtmtlnym.      (1.70) 

 
Since this function is quadratic in (x,y,t), the change in the value of the distance 
function from period t to period t+1 can be decomposed into the impacts of 
changes in outputs, changes in inputs, and the passage of time by means of 
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 lnDo(xt+1,yt+1,t+1) - lnDo(xt,yt,t) = 
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If we define a logarithmic Malmquist productivity index Mo(x,y,t) as the 

difference between weighted average rates of growth of outputs and inputs, with 
distance function elasticities as weights, (1.70) and (1.71) yield 
 

 lnMo(x,y,t) = (½)Σm
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from which it follows that 
 

lnMo(x,y,t) = [lnDo(xt+1,yt+1,t+1) - lnDo(xt,yt,t)]  
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 Expression (1.73) decomposes the logarithmic Malmquist productivity 
index lnMo(x,y,t) into a term capturing the impact of technical efficiency change 
and a term capturing the impact of technical change. However because we did 
not impose constant returns to scale on lnDo(x,y,t) in (1.70), the input weights in 
(1.72) do not necessarily sum to unity, and consequently lnMo(x,y,t) in (1.73) 
ignores the contribution of scale economies to productivity change. The two 
terms on the right side of (1.73) are correct, but lnMo(x,y,t) is not a proper 
productivity index, as we noted in Section 1.7. The two components on the right 
side of (1.73) correspond to TE∆o(xt,yt,xt+1,yt+1) and T∆o(xt,yt,xt+1,yt+1) in Figure 
1.20, but a scale economies component corresponding to S∆o(xt,yt,xt+1,yt+1) is 
missing. 
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 Expression (1.72) decomposes Mo(x,y,t) by aggregating outputs and 
inputs using distance function elasticities. Decomposing Mo(x,y,t) by aggregating 
outputs and inputs using distance function elasticity shares instead gives 
 
 lnMo(x,y,t) = (½)Σm[εm(xt+1,yt+1,t+1) + εm(xt,yt,t)]•ln(ym

t+1/ym
t) 

 
  - (½)Σn[εn(xt+1,yt+1,t+1) + εn(xt,yt,t)]•ln(xn

t+1/xn
t),   (1.74) 
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for s = t,t+1. lnMoc(x,y,t) in (1.74) is a proper productivity index because its input 
weights sum to unity. Consequently it corresponds to a benchmark technology 
satisfying constant returns to scale, as is required if it is to provide an accurate 
measure of productivity change. Finally substituting (1.73) into (1.74) yields 
 
 lnMoc(x,y,t) = [lnDo(xt+1,yt+1,t+1) - lnDo(xt,yt,t)]  
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Expression (1.75) attributes productivity change to technical efficiency 

change and technical change, both from lnMo(x,y,t), and to scale economies, 
expressed as the logarithmic difference between lnMoc(x,y,t) and lnMo(x,y,t). The 
three terms on the right side of (1.75) provide empirical approximations to the 
components TE∆o(xt,yt,xt+1,yt+1), T∆o(xt,yt,xt+1,yt+1) and S∆o(xt,yt,xt+1,yt+1) in Figure 
1.20, and so their sum provides an empirical approximation to Moc(xt,yt,xt+1,yt+1). 

 
All that is required to implement (1.75) is to estimate the translog output 

distance function (1.70), imposing linear homogeneity in outputs and making an 
assumption about the error structure. After estimation, parameter estimates can 
be used to estimate the elasticities involved in the second and third components 
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of the right side of (1.75). Estimation of the first component requires frontier 
techniques described in Section 1.5 and employed by Orea (2002).  
 
 
1.8.3 A Mathematical programming approach 
 
The mathematical programming tools summarized in Section 1.6 also can be 
adapted to the estimation and decomposition of a Malmquist productivity index. 
We summarize an approach that originated with Färe et al. (1992), and that has 
been refined by many authors since. 
 
 The Malmquist productivity index given by (1.62) in Section 1.7 contains 
four output distance functions, each defined on a benchmark technology 
satisfying constant returns to scale. The within-period distance functions are 
estimated using the CCR DEA envelopment program given by (1.53) in Section 
1.6 
  

Doc
s(xs,ys), s=t,t+1 

maxφ,λ    φ 
subject to    Xsλ ≦ xo

s 

                   φyos ≦ Ysλ 

                      λ ≧ 0 
             (1.76) 
 
and the adjacent-period distance functions are estimated using similar CCR DEA 
programs 
 

Doc
s(xr,yr), s,r=t,t+1, s≠r 

maxφ,λ    φ 
subject to    Xsλ ≦ xo

r 

                   φyor ≦ Ysλ 

                      λ ≧ 0 
           (1.77) 
 
Substituting the solutions to these four programs into (1.62) generates a 
Malmquist productivity index estimated using mathematical programming 
techniques. 
 
 Decomposing the Malmquist productivity index requires the estimation of 
distance functions defined on a best practice technology allowing for variable 
returns to scale. This requires use of the BCC DEA envelopment program given 
by (1.54) in Section 1.6. TE∆o(xt,yt,xt+1,yt+1) is estimated as the ratio of the 
following distance functions 
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Do
s(xs,ys), s=t,t+1 

maxφ,λ    φ 
subject to    Xsλ ≦ xo

s 

                   φyos ≦ Ysλ 

                       λ ≧ 0, Σiλi = 1 
           (1.78) 
 
T∆o(xt,yt,xt+1,yt+1) involves these two distance functions and the two following 
distance functions as well 
 
 

Doc
s(xr,yr), s,r=t,t+1, s≠r 

maxφ,λ    φ 
subject to    Xsλ ≦ xo

r 

                   φyor ≦ Ysλ 

                       λ ≧ 0, Σiλi = 1 
           (1.79) 
 
Programs (1.79) evaluate the performance of producers in period r against best 
practice technology prevailing in adjacent period s. Because best practice 
technologies allow for variable returns to scale, it is possible that not all programs 
have feasible solutions, as Ray and Desli (1997) discovered. This possibility 
notwithstanding, once Moc(xt,yt,xt+1,yt+1) has been estimated using the CCR 
programs, and TE∆o(xt,yt,xt+1,yt+1) and T∆o(xt,yt,xt+1,yt+1) have been estimated 
using the BCC programs, the contribution of scale economies to productivity 
change is estimated residually by means of 
 
      S∆o(xt,yt,xt+1,yt+1) = Moc(xt,yt,xt+1,yt+1) / [TE∆o(xt,yt,xt+1,yt+1)•T∆o(xt,yt,xt+1,yt+1)]. 
           (1.80) 
 
 
1.8.4 Evaluating the approximations 
 
Since the truth is unknown, it is difficult to judge the accuracy of the econometric 
estimate of the Malmquist productivity index discussed in Section 1.8.2 and the 
mathematical programming estimate of the Malmquist productivity index 
discussed in Section 1.8.3. It is similarly difficult to judge whether an empirical 
Malmquist productivity index, estimated from either econometric or mathematical 
programming techniques, provides a better or worse approximation to the truth 
than a computed Fisher or Törnqvist productivity index does. In both cases 
statistical inference is required. 
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We can, however, make some relevant observations.  
• First and foremost, Fisher and Törnqvist indexes are superlative only 

under restrictive assumptions. Among them are allocative efficiency, 
which we believe should be a hypothesis to be tested rather than a 
maintained assumption. The econometric and mathematical 
programming approaches do not asume allocative efficiency. They are 
capable of testing the hypothesis, by comparing market price ratios with 
estimated shadow price ratios. 

• Second, Fisher and Törnqvist indexes require price or share information 
in their computation. But prices (and therefore shares) can be distorted 
by market power, by cross-subsidy, and by regulation. In addition, prices 
are missing in large parts of the non-market sector of the economy. The 
econometric and mathematical programming approaches do not require 
price information.  

• Third, the econometric and mathematical programming approaches 
generate the same structural decomposition of the Malmquist 
productivity index, enabling one to attribute productivity change to 
technical efficiency change, technical change and the contribution of 
scale economies. These are the sources identified by the US BLS and 
the OECD. Ray and Mukherjee (1996) and Kuosmanen and Sipiläinen 
(2004) have obtained similar decompositions of the Fisher index, but the 
Törnqvist index has resisted similar efforts. The Fisher and Törnqvist 
productivity indexes have much more natural decompositions in terms of 
identifying the contributions of individual variables. Balk (2004) surveys 
the literature, and Salerian (2003) provides an application to Australian 
railroads. 

 
 
 
1.9 Concluding Remarks 
 
We began this Chapter with an investigation into the recent variation in the 
economic and financial performance of US airlines. Variation in efficiency and 
productivity is commonplace, and examples are reported regularly in the 
business press. Since business performance variation exists, it is incumbent on 
the profession to develop the analytical tools and the empirical techniques 
needed to study it. If we can quantify it, and if we can identify its sources, we 
have a chance of adopting private practices and public policies designed to 
improve it. 
 

We have provided motivation for the study of efficiency and productivity, 
and we have referred to a wide range of empirical applications. We have laid out 
the basics of the underlying theory and the empirical techniques. The reader is 
now properly motivated and adequately prepared to continue on to the more 
extensive analyses provided in subsequent Chapters. 
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